已知曲线.
(1)若曲线C在点处的切线为,求实数和的值;
(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.
(1),,(2).
解析试题分析:(1)根据导数几何意义,所以.因为,所以.因为过点,所以,(2)由题意得:不等式恒成立,恒成立问题一般转化为最值问题.一是分类讨论求函数最小值,二是变量分离为恒成立,求函数最小值.两种方法都是,然后对实数a进行讨论,当时,,所以.当时,由得,不论还是,都是先减后增,即的最小值为,所以.
科目:高中数学
来源:
题型:解答题
已知函数,其中m,a均为实数.
科目:高中数学
来源:
题型:解答题
已知函数,(其中为常数).
科目:高中数学
来源:
题型:解答题
已知函数f(x)=-x3+ax2-4(),是f(x)的导函数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:解
(1), 2分
因为曲线C在点(0,1)处的切线为L:,
所以且. 4分
解得, -5分
(2)法1:
对于任意实数a,曲线C总在直线的的上方,等价于
?x,,都有,
即?x,R,恒成立, 6分
令, 7分
①若a=0,则,
所以实数b的取值范围是; 8分
②若,,
由得, 9分
的情况如下:0 0 +
(1)求的极值;
(2)设,若对任意的,恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.
(1)如果函数和有相同的极值点,求的值;
(2)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.
(3)记函数,若函数有5个不同的零点,求实数的取值范围.
(1)当a=2时,对任意的求的最小值;
(2)若存在使f(x0)>0,求a的取值范围.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号