已知函数,(其中常数)
(1)当时,求曲线在处的切线方程;
(2)若存在实数使得不等式成立,求的取值范围.
(1);(2).
解析试题分析:(1)先求导函数,由导数的几何意义知,利用直线的点斜式方程求切线方程;(2)依题意,只需在上成立,故转化为求函数在区间的最小值问题.的根,得,并讨论根定义域的位置,当,将定义域分段,并考虑导数的符号,判断函数大致图象,求函数的最小值;当时,函数单调性,利用单调性求函数的最小值,并列不等式,求参数的取值范围.
试题解析:(1)定义域
当时,,
,
曲线在处的切线方程为:.
(2),令,
在递减,在递增..
若存在实数使不等式成立,
只需在上成立,
①若,即时,
,即,.10分
②若,即时,,解得,故
综上所述:的取值范围.
考点:1、导数的几何意义;2、导数在单调性上的应用;3、利用导数求函数的极值、最值.
科目:高中数学 来源: 题型:解答题
某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设(弧度),将绿化带总长度表示为的函数;
(2)试确定的值,使得绿化带总长度最大.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知()
(1)若方程有3个不同的根,求实数的取值范围;
(2)在(1)的条件下,是否存在实数,使得在上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,.
(1)若函数在上单调递增,求实数的取值范围;
(2)求函数的极值点.
(3)设为函数的极小值点,的图象与轴交于两点,且,中点为,
求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com