精英家教网 > 高中数学 > 题目详情

已知.
(1)求函数的最大值;
(2)设,且,证明:.

(1)0;(2)证明过程详见解析.

解析试题分析:本题主要考查导数的运算、利用导数研究函数的单调性、最值等基础知识,同时考查分析问题解决问题的综合解题能力和计算能力.第一问,对求导,由于单调递增,单调递减,判断出函数的单调性,求出函数的最大值;第二问,根据第一问的结论将定义域分成2部分,当时,函数为单调递减,所以,所以一定小于1,当时,只需证明即可,构造新函数,对求导,判断的单调性,求出的最小值为0,所以,所以,即.
试题解析:(Ⅰ)
时,单调递增;
时,单调递减.
所以的最大值为.       5分
(Ⅱ)由(Ⅰ)知,当时,.     7分
时,等价于设
,则
时,,则
从而当时,单调递减.
时,,即
综上,总有.        12分
考点:1.利用导数研究函数的单调性;2.利用导数求函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,且是函数的一个极小值点.
(1)求实数的值;
(2)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知,且函数在R上是单调函数,探究函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求处的切线方程;
(2)若在R上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的单调区间;
(2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-a2x2+ax(aR).
(l)当a=1时,证明:函数f(x)只有一个零点;
(2)若函数f(x)在区间(1,十)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 , .
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x3+ax2-4(a∈R).
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为,求f(x)在[-1,1]上的最小值;
(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.

查看答案和解析>>

同步练习册答案