已知函数在上是减函数,在上是增函数,函数在上有三个零点,且是其中一个零点.
(1)求的值;
(2)求的取值范围;
(3)设,且的解集为,求实数的取值范围.
(1),(2),(3)
解析试题分析:(1)函数在处单调性发生变化,所以,由得.(2)因为,所以,因此因为函数在上有三个零点,所以必有两个不等的根,.又在上是增函数,所以大根不小于1,即,,故的取值范围为.(3)已知不等式解集求参数取值范围,有两个解题思路,一是解不等式,根据解集包含关系对应参数取值范围.二是转化,将不等式在区间有解理解为恒成立问题,利用函数最值解决参数取值范围.本题由于已知是其中一个零点,所以两个方法都简便.否则应利用变量分离求最值法.
试题解析:(1)∵f(x)=-x3+ax2+bx+c,∴. 1分
∵f(x)在上是减函数,在上是增函数,
∴当时,取到极小值,即.∴. 3分
(2)由(1)知,,
∵是函数的一个零点,即,∴. 5分
∵的两个根分别为,.
又∵在上是增函数,且函数在上有三个零点,
∴,即. 7分
∴.
故的取值范围为. 9分
(3)解法1:由(2)知,且.
∵是函数的一个零点,∴,
∵,∴,
∴点是函数和函数的图像的一个交点. 10分
结合函数和函数的图像及其增减特征可知,当且仅当函数和函数的图像只有一个交点时,的解集为.
即方程组①只有一组解: 11分
由,得.
即.
即
科目:高中数学 来源: 题型:解答题
已知某工厂生产件产品的成本为(元),
问:(1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,(其中为常数).
(1)如果函数和有相同的极值点,求的值;
(2)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.
(3)记函数,若函数有5个不同的零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经销商用一辆型卡车将某种水果运送(满载)到相距400km的水果批发市场.据测算,型卡车满载行驶时,每100km所消耗的燃油量(单位:)与速度(单位:km/h)的关系近似地满足,除燃油费外,人工工资、车损等其他费用平均每小时300元.已知燃油价格为7.5元/L.
(1)设运送这车水果的费用为(元)(不计返程费用),将表示成速度的函数关系式;
(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)当时,求函数的极值;
(2)若函数在区间上是减函数,求实数的取值范围;
(3)当时,函数图像上的点都在所表示的平面区域内,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com