精英家教网 > 高中数学 > 题目详情

已知某工厂生产件产品的成本为(元),
问:(1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?

(1) 1000 ;(2) 6000.

解析试题分析:(1)先根据题意设生产x件产品的平均成本为y元,再结合平均成本的含义得出函数y的表达式,最后利用导数求出此函数的最小值即可;
(2)先写出利润函数的解析式,再利用导数求出此函数的极值,从而得出函数的最大值,即可解决问题:要使利润最大,应生产多少件产品..
试题解析:解:(1)设平均成本为元,则
,令
当在附近左侧时
附近右侧时,故当时,取极小值,而函数只有一个点使,故函数在该点处取得最小值,因此,要使平均成本最低,应生产1000件产品.  6分;
(2)利润函数为
,得,当在附近左侧时;在附近右侧时,故当时,取极大值,而函数只有一个点使,故函数在该点处取得最大值,因此,要使利润最大,应生产6000件产品.      12分;
考点:导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数()
(1)当a=2时,求在区间[e,e2]上的最大值和最小值;
(2)如果函数在公共定义域D上,满足<<,那么就称的“伴随函数”.已知函数,若在区间(1,+∞)上,函数的“伴随函数”,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数.
(1)若处的切线与直线垂直,求的值;
(2)求上的最小值;
(3)试探究能否存在区间,使得在区间上具有相同的单调性?若能存在,说明区间的特点,并指出在区间上的单调性;若不能存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数处取得极值,求的值;
(2)若函数的图象上存在两点关于原点对称,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线 y = x3 + x-2 在点 P0 处的切线  平行于直线
4x-y-1=0,且点 P0 在第三象限,
⑴求P0的坐标;
⑵若直线  , 且 l 也过切点P0 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域是,其中常数.(注:
(1)若,求的过原点的切线方程.
(2)证明当时,对,恒有.
(3)当时,求最大实数,使不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.当时,函数取得极值
(1)求函数的解析式;
(2)若方程有3个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)证明:对任意的,存在唯一的,使
(3)设(2)中所确定的关于的函数为,证明:当时,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是减函数,在上是增函数,函数上有三个零点,且是其中一个零点.
(1)求的值;
(2)求的取值范围;
(3)设,且的解集为,求实数的取值范围.

查看答案和解析>>

同步练习册答案