精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ln x,g(x)=x2-bx(b为常数).
(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数b的取值范围.

(1)-1±
(2)(2,+∞)
(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)讨论在其定义域上的单调性;
(2)当时,求取得最大值和最小值时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的极值;
(2)若对,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当a=1时,求曲线在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的值;
(3)若对任意,且恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求的值;(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上是增函数,求实数的取值范围;
(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

查看答案和解析>>

同步练习册答案