精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=sin(2x+φ)(-π<φ<0)是偶函数.
(1)求φ的值;
(2)求函数f(x)图象的对称中心和单调递减区间.

分析 (1)根据偶函数的性质得sin(-2x+φ)=sin(2x+φ),使用诱导公式得出φ;
(2)利用余弦函数的图象与性质列出不等式或等式求出对称中心和单调区间.

解答 解:(1)∵f(x)=sin(2x+φ)是偶函数,
∴f(-x)=sin(-2x+φ)=sin(2x+π-φ)=f(x)=sin(2x+φ),
∴π-φ-φ=2kπ,即φ=$\frac{π(1-2k)}{2}$,k∈Z.
∵-π<φ<0,∴当k=1时,φ=-$\frac{π}{2}$.
(2)由(1)得f(x)=sin(2x-$\frac{π}{2}$)=-cos2x.
令2x=$\frac{π}{2}+kπ$得x=$\frac{π}{4}+\frac{kπ}{2}$,∴f(x)的对称中心是($\frac{π}{4}+\frac{kπ}{2}$,0),k∈Z.
令-π+2kπ≤2x≤2kπ.解得-$\frac{π}{2}+kπ$≤x≤kπ.
∴f(x)的单调减区间是[-$\frac{π}{2}+kπ$,kπ],k∈Z.

点评 本题考查了三角函数的恒等变换,余弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.l与抛物线y2=2px相交于A、B两点,O为原点,如果0A垂直于0B,则l一定过(  )
A.($\frac{p}{2}$,0)B.(p,0)C.(2p,0)D.(3p,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为45°,对于任意实数t,|$\overrightarrow{b}$+t$\overrightarrow{a}$|的最小值$\sqrt{10}$,则|$\overrightarrow{b}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$=(6,4),$\overrightarrow{b}$=(0,2),$\overrightarrow{c}$=$\overrightarrow{a}$+m$\overrightarrow{b}$,求满足下列条件的m的范围:
(1)|$\overrightarrow{c}$|=10
(2)($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{c}$
(3)(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知AB是抛物线x2=4y的一条焦点弦,若该弦的中点纵坐标是3,则弦AB所在的直线方程是y=±x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:sin[nπ+(-1)n•$\frac{π}{6}$]=cos[2nπ+(-1)n•$\frac{π}{3}$](n∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.顶点在单位圆上的△ABC中,角A,B,C所对的边分为a、b、c,若sinA=$\frac{\sqrt{3}}{2}$,b2+c2=4,则S△ABC=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆Γ的中心在原点,焦距为2,且长轴长是短轴长的$\sqrt{2}$倍.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)设P(2,0),过椭圆Γ左焦点F的直线l交Γ于A、B两点,若对满足条件的任意直线l,不等式$\overrightarrow{PA}$•$\overrightarrow{PB}$≤λ(λ∈R)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥A-BCDE中,底面BCDE为平行四边形,且△ABE是以∠BAE为直角的等腰直角三角形,O为BE中点,且CO⊥CD,CO=$\frac{\sqrt{2}}{2}$a,AB=a.
(1)证明:CD⊥平面AOC;
(2)若侧面ABE⊥底面BCDE,且四棱锥A-BCDE的体积为36$\sqrt{2}$,求a的值.

查看答案和解析>>

同步练习册答案