精英家教网 > 高中数学 > 题目详情
是定义在上的两个可导函数,若,满足,则满足(    )
A.B.为常数函数
C.D.为常数函数
B

试题分析:因为都是定义在上的两个可导函数,且满足时,,所以时,恒有,所以函数为常数函数,选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)对于函数中的任意实数x,在上总存在实数,使得成立,求实数的取值范围
(2)设函数,当在区间内变化时,
(1)求函数的取值范围;
(2)若函数有零点,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)设,且,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知,且函数在R上是单调函数,探究函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;
(3)设q>p>2,求证:当x∈(p,q)时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求处的切线方程;
(2)若在R上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(1)求函数的最大值;
(2)设,证明:有最大值,且.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当在区间上的最大值和最小值;
(Ⅱ)若在区间上,函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线yx2+1,求过点P(0,0)的曲线的切线方程.

查看答案和解析>>

同步练习册答案