【题目】已知函数f(x)=ax﹣lnx,a∈R.
(1)求函数f(x)的单调区间;
(2)当x∈(0,e]时,求g(x)=e2x﹣lnx的最小值;
(3)当x∈(0,e]时,证明:e2x﹣lnx﹣
>
.
【答案】
(1)解:∵函数f(x)=ax﹣lnx,a∈R,
∴
.
①当a≤0时,f'(x)<0,∴f(x)在(0,+∞)上单调递减;
②当a>0时,令f'(x)>0,得
,令f'(x)<0,得
,
∴f(x)在
上单调递减,在
上单调递增.
综上,当a≤0时,f(x)的单调递减区间是(0,+∞),无单调递增区间;
当a>0时,f(x)的单调递减区间是
,单调递增区间是 ![]()
(2)解:∵g(x)=e2x﹣lnx,则
,
令g′(x)=0,得
,当
时,g′(x)<0,
当
时,g′(x)>0,g
∴当
时,g(x)取得最小值, ![]()
(3)解:证明:令
,则
,令φ'(x)=0,得x=e.
当0<x≤e时,φ'(x)≥0,h(x)在(0,e]上单调递增,
∴
,
所以
, ![]()
【解析】(1)求出
,由a≤0和a>0两种情况分类讨论,利用导数性质能求出f(x)的单调区间.(2)由g(x)=e2x﹣lnx,得
,由此利用导性质能求出g(x)的最小值.(3)令
,则
,令φ'(x)=0,得x=e,由此利用导数性质能证明e2x﹣lnx﹣
>
.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线C1:
,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1 , C2都有公共点,则称P为“C1﹣C2型点” ![]()
(1)在正确证明C1的左焦点是“C1﹣C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;
(3)求证:圆x2+y2=
内的点都不是“C1﹣C2型点”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当x∈(0,1)时,求f(x)的单调性;
(2)若h(x)=(x2﹣x)f(x),且方程h(x)=m有两个不相等的实数根x1 , x2 . 求证:x1+x2>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,有f(x)>0.
①求证:f(
)=f(m)﹣f(n);
②求证:f(x)在(0,+∞)上是增函数;
③比较f(
)与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在
上的函数
满足:对任意
都有
.
(1)求证:函数
是奇函数;
(2)如果当
时,有
,试判断
在
上的单调性,并用定义证明你的判断;
(3)在(2)的条件下,若
对满足不等式
的任意
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
![]()
图1 图2
(1)记“在
年成交的二手车中随机选取一辆,该车的使用年限在
”为事件
,试估计
的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中
(单位:年)表示二手车的使用时间,
(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用
作为二手车平均交易价格
关于其使用年限
的回归方程,相关数据如下表(表中
,
):
![]()
①根据回归方程类型及表中数据,建立
关于
的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格
的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格
的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
;
②参考数据:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com