【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
![]()
图1 图2
(1)记“在
年成交的二手车中随机选取一辆,该车的使用年限在
”为事件
,试估计
的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中
(单位:年)表示二手车的使用时间,
(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用
作为二手车平均交易价格
关于其使用年限
的回归方程,相关数据如下表(表中
,
):
![]()
①根据回归方程类型及表中数据,建立
关于
的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格
的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格
的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
;
②参考数据:
.
【答案】(1)0.40;(2)
0.29万元
【解析】
⑴由频率分布直方图可得,该汽车交易市场
年成交的二手车使用时间在
的频率为
,在
的频率为
,从而得出
的概率
⑵①求出
关于
的线性回归方程为
,,分别求出
和
,继而求出
关于
的回归方程
②分别求出对应的频率,然后计算平均佣金
(1)由频率分布直方图得,该汽车交易市场2017年成交的二手车使用时间在
的频率为
,在
的频率为
所以
.
(2)①由
得
,即
关于
的线性回归方程为
.
因为
,
![]()
所
关于
的线性回归方程为
,
即
关于
的回归方程为
②根据①中的回归方程
和图1,对成交的二手车可预测:
使用时间在
的平均成交价格为
,对应的频率为
;
使用时间在
的平均成交价格为
,对应的频率为
;
使用时间在
的平均成交价格为
,对应的频率为
;
使用时间在
的平均成交价格为
,对应的频率为
;
使用时间在
的平均成交价格为
,对应的频率为![]()
所以该汽车交易市场对于成交的每辆车可获得的平均佣金为
![]()
万元
科目:高中数学 来源: 题型:
【题目】下列说法:①设有一个回归方程
,变量
增加一个单位时,
平均增加
个单位;②线性回归直线
必过必过点
;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有
的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有
的可能患肺病;其中错误的个数是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx,a∈R.
(1)求函数f(x)的单调区间;
(2)当x∈(0,e]时,求g(x)=e2x﹣lnx的最小值;
(3)当x∈(0,e]时,证明:e2x﹣lnx﹣
>
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问100性别不同的大学生是否爱好某项运动,得到如下2×2列联表:
男 | 女 | 总计 | |
爱好 | 40 | ||
不爱好 | 25 | ||
总计 | 45 | 100 |
(1)将题中的2×2列联表补充完整;
(2)能否有99%的把握认为断爱好该项运动与性别有关?请说明理由;
附:K2=
,
p(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
(3)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建了“运动达人社”,现从“运动达人设”中选派3人参加某项校际挑战赛,记选出3人中的女大学生人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx,g(x)=
(其中a∈R)
(1)求函数f(x)的极值;
(2)设函数h(x)=f′(x)+g(x)﹣1,试确定h(x)的单调区间及最值;
(3)求证:对于任意的正整数n,均有
>
成立.(注:e为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x+1|﹣|2x﹣4|;
(1)解不等式f(x)≥1;
(2)若对x∈R,都有f(x)+3|x﹣2|>m,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用 水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) | [0.6,0.7) |
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) |
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
⑴在答题卡上作出使用了节水龙头
⑵估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;
⑶估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为
,
为
的中点,
为线段
上的动点,过点
,
,
的平面截该正方体所得的截面记为
,则下列命题正确的是__________(写出所有正确命题的编号).
①当
时,
为四边形;
②当
时,
为等腰梯形;
③当
时,
与
的交点
满足
;
④存在点
,
为六边形.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com