精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴,求实数a的值;
(2)当a>0时,求函数f(|sinx|)的最小值.
由题意得:f'(x)=(ex)'•(ax2-2x-2)+ex•(ax2-2x-2)'
=ex(ax2-2x-2)+ex(2ax-2)=aex(x-
2
a
)(x+2)
;(3分)
(1)由曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴,
结合导数的几何意义得f'(2)=0,
a•e2•(2-
2
a
)(2+2)
=4ae2
2a-2
a
=0

解得a=1;(6分)
(2)设|sinx|=t(0≤t≤1),
则只需求当a>0时,函数y=f(t)(0≤t≤1)的最小值.
令f'(x)=0,解得x=
2
a
或x=-2,而a>0,即
2
a
>-2

从而函数f(x)在(-∞,-2)和(
2
a
,+∞)
上单调递增,在(-2,
2
a
)
上单调递减.
2
a
≥1
时,即0<a≤2时,函数f(x)在[0,1]上为减函数,ymin=f(1)=(a-4)e;
0<
2
a
<1
,即 a>2时,函数f(x)的极小值,
即为其在区间[0,1]上的最小值,ymin=f(
2
a
)=-2e
2
a

综上可知,当0<a≤2时,函数f(|sinx|)的最小值为(a-4)e;
当a>2时,函数f(|sinx|)的最小值为-2e
2
a
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案