精英家教网 > 高中数学 > 题目详情
19.设两条直线x+y-2=0,3x-y-2=0的交点为M,若点M在圆(x-m)2+y2=5内,则实数m的取值范围为(-1,3).

分析 求出两条直线的交点坐标,以及圆的圆心的距离小于半径,求解即可得答案.

解答 解:由题意可知:$\left\{\begin{array}{l}{x+y-2=0}\\{3x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,交点(1,1),
交点M在圆(x-m)2+y2=5的内部,
可得(1-m)2+1<5,
解得-1<m<3.
∴实数m的取值范围为:(-1,3).
故答案为:(-1,3).

点评 本题考查点与圆的位置关系的应用,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是(  )
A.(-∞,$\frac{1}{2}$]∪[2,+∞)B.[$\frac{1}{2}$,2]C.(-∞,-2]∪[-$\frac{1}{2}$,+∞)D.[-$\frac{1}{2}$,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C过点$A(\frac{3}{4},\;0)$,且与直线$l:\;x=-\frac{3}{4}$相切,
(I)求圆心C的轨迹方程;
(II) O为原点,圆心C的轨迹上两点M、N(不同于点O)满足$\overrightarrow{OM}•\overrightarrow{ON}=0$,已知$\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OM}$,$\overrightarrow{OQ}=\frac{1}{3}\overrightarrow{ON}$,证明直线PQ过定点,并求出该定点坐标和△APQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在(-∞,+∞)上的奇函数,当x>0时,f(x)=4x-x2,若函数f(x)在区间[t,4]上的值域为[-4,4],则实数t的取值范围是[-2-2$\sqrt{2}$,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-m|$\overrightarrow{a}$+$\overrightarrow{b}$|+1,x∈[-$\frac{π}{3}$,$\frac{π}{4}$],m∈R.
(1)当m=0时,求f($\frac{π}{6}$)的值;
(2)若f(x)的最小值为-1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+$\frac{24}{49}$m2,x∈[-$\frac{π}{3}$,$\frac{π}{4}$]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(文)设f(x)=sinx-2cosx+1的导函数为f′(x),则f′($\frac{3π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l:y=2x+n,n∈R,圆M的圆心在y轴,且过点(1,1).
(1)当n=-2时,若圆M与直线l相切,求该圆的方程;
(2)设直线l关于y轴对称的直线为l′,试问直线l′与抛物线N:x2=6y是否相切?如果相切,求出切点坐标;如果不想切,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合U=R,集合$A=\left\{{x\left|{{{log}_2}x<1}\right.}\right\},B=\left\{{x\left|{{x^2}-2x-3≤0}\right.}\right\}$,则(∁UA)∩B=(  )
A.[2,3]B.[-1,2]C.[-1,0]D.[-1,0]∪[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则sinAcosBsinC=(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{8}$D.$\frac{\sqrt{3}}{8}$

查看答案和解析>>

同步练习册答案