在△ABC中,已知a,b,c分别为内角A、B、C的对边,若b=2a,B=A+60°,则A=________.
30°
分析:通过正弦定理以及两角和的正弦函数,化简b=2a,求出tanA=

,然后求出A的大小.
解答:因为b=2a
由正弦定理得:sinB=2sinA,
∵B=A+60°
∴sin(A+60°)=2sinA

sinA+

cosA=2sinA

cosA=3sinA
tanA=

,
而A∈(0,180°)
所以A=30°
故答案为:30°.
点评:本题考查正弦定理以及两角和的正弦函数的应用,考查计算能力.