函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )
A.ex+1 B.ex-1
C.e-x+1 D.e-x-1
科目:高中数学 来源: 题型:
已知f(x)=
(x≠a),
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=|log
x|,若m<n,有f(m)=f(n),则m+3n的取值范围是( )
A.[2
,+∞) B.(2
,+∞)
C.[4,+∞) D.(4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=|logax|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n-m的最小值为
,则实数a的值为( )
A.
B.
或![]()
C.
D.
或![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=x+
(x∈(-∞,0)∪(0,+∞))的图象为C1,C1关于点A(2,1)的对称的图象为C2,C2对应的函数为g(x).
(1)求函数y=g(x)的解析式,并确定其定义域;
(2)若直线y=b与C2只有一个交点,求b的值,并求出交点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com