分析 由题α的范围,进而可求范围:k360°+255°<75°+α<k360°+345°,利用同角三角函数基本关系式可求sin(75°+α)的值,进而利用诱导公式即可化简求值得解.
解答 解:∵角α的正弦值与余弦值均为负值,
∴由题知k360°+180°<α<k360°+270°,k∈Z,
故k360°+255°<75°+α<k360°+345°,
∵cos(75°+α)=$\frac{1}{3}$,
∴sin(75°+α)=-$\sqrt{1-co{s}^{2}(\frac{5π}{12}+α)}$=-$\frac{2\sqrt{2}}{3}$,
∴cos(105°-α)+sin(α-105°)=-cos(75°+α)-sin(75°+α)=$\frac{2\sqrt{2}-1}{3}$.
故答案为:$\frac{2\sqrt{2}-1}{3}$.
点评 本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,5] | B. | [-2,2] | C. | [-1,2] | D. | [-2,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对任意x∈R,$\sqrt{x}$是无理数 | |
| B. | 对任意x,y∈R,若xy≠0,则x,y至少有一个不为0 | |
| C. | 存在实数既能被3整除又能被19整除 | |
| D. | x>1是$\frac{1}{x}$<1的充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{4}{3},2)$ | B. | $[\frac{4}{3},2)$ | C. | $(-∞,\frac{4}{3})∪(2,+∞)$ | D. | $(-∞,\frac{4}{3}]∪(2,+∞)$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com