精英家教网 > 高中数学 > 题目详情
4.已知集合A={x|x2-2x-3<0},集合B={x|2x-1≥1},则A∩B=(  )
A.[-1,3)B.[0,3)C.[1,3)D.(1,3)

分析 求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.

解答 解:由A中不等式变形得:(x-3)(x+1)<0,
解得:-1<x<3,即A=(-1,3),
由B中不等式变形得:2x-1≥1=20,即x-1≥0,
解得:x≥1,即B=[1,+∞),
则A∩B=[1,3),
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设a=sin$\frac{π}{5}$,b=log${\;}_{\sqrt{2}}$$\sqrt{3}$,c=($\frac{1}{4}$)${\;}^{\frac{2}{3}}$,则(  )
A.a<c<bB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,已知圆C:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数),点P在直线l:x+y-4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.
( I)求圆C和直线l的极坐标方程;
( II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR|•|OQ|,求Q点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足a1=2,且$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$,则{an}的通项公式为an=n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“x2+5x-6>0”是“x>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}满足:a1=1,an=an-12+2an-1(n≥2),若bn=$\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_n}+2}}$(n∈N*),则数列{bn}的前n项和Sn=1-$\frac{1}{{2}^{{2}^{n}}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+2y≤4\\ x-2y≤2\end{array}\right.$,如果目标函数z=x+ay的最大值为$\frac{16}{3}$,则实数a的值为(  )
A.3B.$\frac{14}{3}$C.3或$\frac{14}{3}$D.3或$-\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将一颗骰子掷两次,则第二次出现的点数是第一次点数的2倍的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{18}$C.$\frac{1}{2}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在直角梯形ABCD中,AB∥CD,∠A=90°,∠C=45°,AB=AD=1,沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一球面上,则该球的表面积为4π.

查看答案和解析>>

同步练习册答案