精英家教网 > 高中数学 > 题目详情

如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。

求:(1)⊙O的半径;
(2)s1n∠BAP的值。

(1)7.5(;2)

解析试题分析:(1)由题可知,利用切割线定理即可;(2)根据弦切角定理可知s1n∠BAP=s1n∠ACB,然后求出AB、BC的比值即可.
试题解析:(Ⅰ)因为PA为⊙O的切线,所以,
又由PA=10,PB=5,所以PC=20,BC=20-5=15        2分.
因为BC为⊙O的直径,所以⊙O的半径为7.5.       4分
(2)∵PA为⊙O的切线,∴∠ACB=∠PAB,             5分
又由∠P=∠P, ∴△PAB∽△PCA,∴     7分
设AB=k,AC="2k," ∵BC为⊙O的直径,
∴AB⊥AC∴                 8分
∴s1n∠BAP=s1n∠ACB=               10分
考点:平面几何中圆的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q.
(1)求证:
(2)若AQ=2AP,AB=,BP=2,求QD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是正方形,E是AD上一点,且AE=AD,N是AB的中点,NF⊥CE于F,求证:FN2=EF·FC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在锐角三角形ABC中,D 为C在AB上的射影,E 为D在BC上的射影,F为DE上一点,且满足
 
(1)证明:(2)若AD=2,CD=3.DB=4,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆的圆心的直角边上,该圆与直角边相切,与斜边交于.

(1)求的长;
(2)求圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AB为☉O直径,直线CD与☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.

(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB过圆心O,交于F(不与B重合),直线相切于C,交AB于E,且与AF垂直,垂足为G,连结AC

求证:(1);(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,求DE与BC的长度比.

查看答案和解析>>

同步练习册答案