精英家教网 > 高中数学 > 题目详情

如图所示,AB为☉O直径,直线CD与☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

见解析

解析证明:(1)由直线CD与☉O相切,
得∠CEB=∠EAB.
由AB为☉O的直径,
得AE⊥EB,
从而∠EAB+∠EBF=;
又EF⊥AB,得
∠FEB+∠EBF=,
从而∠FEB=∠EAB.
故∠FEB=∠CEB.
(2)由BC⊥CE,EF⊥AB,
∠FEB=∠CEB,BE是公共边,
得Rt△BCE≌Rt△BFE,
所以BC=BF.
类似可证:Rt△ADE≌Rt△AFE,
得AD=AF.
又在Rt△AEB中,EF⊥AB,
故EF2=AF·BF,
所以EF2=AD·BC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N.若AC=AB,求证:BN=2AM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形ABCD中,△ABC≌△BAD.求证:AB∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。

求:(1)⊙O的半径;
(2)s1n∠BAP的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,为圆的切线,为切点,的角平分线与和圆分别交于点.

(1)求证(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=AB,BD,CE相交于点F.

(1)求证:A,E,F,D四点共圆;
(2)若正△ABC的边长为2,求A,E,F,D所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆O的半径OC垂直于直径AB,弦CD交半径 OAE,过D的切线与BA的延长线交于M.
 
(1)求证:MDME
(2)设圆O的半径为1,MD,求MACE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,若BE∥CF∥DG,AB∶BC∶CD=1∶2∶3,CF=12  cm,求BE,DG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB为⊙O的直径,直线CD与⊙O相切于EAD垂直CDDBC垂直CDCEF垂直ABF,连接AEBE.证明:

(1)∠FEB=∠CEB
(2)EF2AD·BC.

查看答案和解析>>

同步练习册答案