精英家教网 > 高中数学 > 题目详情
16.在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1内,通过点M(1,1)且被这点平分的弦所在的直线方程为9x+16y-25=0.

分析 由点M(1,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),中点坐标公式可知:x1+x2=2,y1+y2=2.由$\frac{{x}_{1}^{2}}{16}+\frac{{y}_{1}^{2}}{9}=1$①,$\frac{{x}_{2}^{2}}{16}+\frac{{y}_{2}^{2}}{9}=1$②,①-②得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{16}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{9}$=0,由对称性知x1≠x2,则k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{9}{16}$,由直线的点斜式方程,y-1=-$\frac{9}{16}$(x-1),即可求得直线方程.

解答 解:设以点M(1,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),
则x1+x2=2,y1+y2=2.
又$\frac{{x}_{1}^{2}}{16}+\frac{{y}_{1}^{2}}{9}=1$①,$\frac{{x}_{2}^{2}}{16}+\frac{{y}_{2}^{2}}{9}=1$②
①-②得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{16}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{9}$=0
又据对称性知x1≠x2
∴以点M(1,1)为中点的弦所在直线的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{9}{16}$,
∴中点弦所在直线方程为y-1=-$\frac{9}{16}$(x-1),即9x+16y-25=0.
故答案为:9x+16y-25=0.

点评 本题主要考查了直线与椭圆相交关系的应用,要掌握这种设而不求的方法在求解直线方程中的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1-m+lnx}{x}$,m∈R.
(1)当m=0时,若函数在区间(a,a+$\frac{1}{2}$)上存在极值(其中a>0),求实数a的取值范围;
(2)若不等式x(x+1)f(x)+m≥(k-m)x对x∈[1,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=16x的焦点到准线的距离是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若将一个45°的直角三角板的一直角边放在一桌面上,另一直角边与桌面所成角为45°,则此时该三角板的斜边与桌面所成的角等于30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.记Sk=1k+2k+3k+…+nk,当k=1,2,3…时,观察下列等式:
S1=$\frac{1}{2}{n}^{2}+\frac{1}{2}n$,S2=$\frac{1}{3}{n}^{3}+\frac{1}{2}{n}^{2}+\frac{1}{6}n$,S3=$\frac{1}{4}{n}^{4}+\frac{1}{2}{n}^{3}+\frac{1}{4}{n}^{2}$,
S${\;}_{4}=\frac{1}{5}{n}^{5}+\frac{1}{2}{n}^{4}+\frac{1}{3}{n}^{3}-\frac{1}{30}n$,S5=$\frac{1}{6}{n}^{6}+A{n}^{5}+B{n}^{4}-\frac{1}{12}{n}^{2}$,…,
可以推测A-B=$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于R上可导的任意函数f(x),若满足$\frac{3+2x}{f′(x)}$≥0,则有(  )
A.f(-1)+f(-2)<2f(-$\frac{3}{2}$)B.f(-1)+f(-2)>2f(-$\frac{3}{2}$)C.f(-1)+f(-2)≤2f(-$\frac{3}{2}$)D.f(-1)+f(-2)≥2f(-$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a+bcosx+csinx的图象经过点A(0,1)及$B(\frac{π}{2},1)$
(1)已知b>0,求f(x)的单调递减区间;
(2)已知$x∈(0,\frac{π}{2})$时,|f(x)|≤2恒成立,求实数a的取值范围;
(3)当a取上述范围内的最大整数值时,若有实数m,n,φ,使得mf(x)+nf(x-φ)=1对于x∈R恒成立,求m,n,φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C的圆心在直线2x-y-3=0上,且经过点A(5,2),B(3,2)
(1)求圆C的标准方程;
(2)直线l过点P(2,1)且与圆C相交,所得弦长为2$\sqrt{6}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数g(x)满足g(x)=g($\frac{1}{x}$),当x∈[$\frac{1}{3}$,1]时,g(x)=-3lnx.若函数f(x)=g(x)-mx在区间[$\frac{1}{3}$,3]上有三个不同的零点,则实数m的取值范围是(  ),则实数m的取值范围是(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[ln3,$\frac{3}{e}$)C.[ln3,$\frac{1}{e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

同步练习册答案