精英家教网 > 高中数学 > 题目详情

椭圆上的点到直线的距离的最小值为        。

解析试题分析:椭圆的参数方程为 
整理得,所以最小值为
考点:动点到直线的距离
点评:本题采用椭圆的参数方程,借助三角函数的有界性求得最值;还可利用直线与椭圆的位置关系求最值,当与已知直线平行的直线与椭圆相切时,切点满足到直线的距离取得最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设椭圆的四个顶点A、B、C、D, 若菱形ABCD的内切圆恰好经过椭圆的焦点, 则椭圆的离心率为         __  

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

过椭圆的右焦点的直线交椭圆于于两点,令,则

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在平面直角坐标系中,椭圆的中心为原点,焦点轴上,离心率为。过的直线 交椭圆两点,且的周长为16,那么的方程为          

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知双曲线,直线与该双曲线只有一个公共点,
k =                .(写出所有可能的取值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

椭圆上的任意一点(除短轴端点除外)与短轴两个端点的连线交轴于点,则的最小值是      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

方程+=1({1,2,3,4,…,2013})的曲线中,所有圆面积的和等于       ,离心率最小的椭圆方程为                      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

以椭圆的中心为顶点,右焦点为焦点的抛物线方程是     .

查看答案和解析>>

同步练习册答案