精英家教网 > 高中数学 > 题目详情
15.$sin(-\frac{23π}{3})$=$\frac{\sqrt{3}}{2}$.

分析 利用诱导公式,特殊角的三角函数值即可化简得解.

解答 解:$sin(-\frac{23π}{3})$=-sin(7π+$\frac{2π}{3}$)=sin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题主要考查了诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{5π}{6}$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{3}$,$\overrightarrow c=2\overrightarrow a+3\overrightarrow b$,则$|{\overrightarrow c}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知⊙O1与⊙O2相交于点M,N,NA为⊙O2的直径,连接AM交⊙O1于点B,点C为$\widehat{AM}$的中点,连接CN分别与直线AB,⊙O1交于点D,E.求证:
(1)AC∥BE
(2)CD•BE2=CN•DE2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$tan(θ-\frac{π}{4})=\frac{1}{3}$,则tanθ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正四面体A-BCD中,AC与BD所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2,以F1F2为直径的圆被直线$\frac{x}{a}+\frac{y}{b}=1$截得的弦长为$\sqrt{13}a$,则双曲线的离心率为(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算
(1)$\frac{tan10°tan70°}{tan70°-tan10°+tan120°}$    
(2)$\frac{{2cos40°+cos10°(1+\sqrt{3}tan10°)}}{{\sqrt{1+cos10°}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2)(n为正整数).设数列{bn}满足bn=$\left\{\begin{array}{l}{{a}_{n},n为偶数}\\{{2}^{{a}_{n}},n为奇数}\end{array}\right.$,求Tn=b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=$\sqrt{3}$sin2ωx+sinωxcosωx-$\frac{\sqrt{3}}{2}$(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为$\frac{π}{4}$.
(1)求ω的值;
(2)求f(x)在区间[0,$\frac{π}{2}$]上取最小值时x的值.

查看答案和解析>>

同步练习册答案