精英家教网 > 高中数学 > 题目详情
如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45°.
(1)求此正三棱柱的侧棱长;
(2)求二面角A-BD-C的平面角的正切值.
分析:(1)取BC中点E,连AE,ED,由正三棱柱的几何特征及面面垂直的性质,可得AE⊥侧面B1C1CB,则直线AD与侧面B1C1CB所成的角为∠ADE,解Rt△AED可得此正三棱柱的侧棱长
(2)过E作EF⊥BD于F,连AF,可得∠AFE为二面角A-BD-C的平面角,解Rt△BEF和Rt△AEF可得二面角A-BD-C的平面角的正切值.
解答:解:(1)设正三棱柱ABC-A1B1C1的侧棱长为x.取BC中点E,连AE.
∵△ABC是正三角形,
∴AE⊥BC.
又底面ABC⊥侧面B1C1CB,且交线为BC.
∴AE⊥侧面B1C1CB,
连ED,则直线AD与侧面B1C1CB所成的角为∠ADE=45°.
在Rt△AED中,tan45°=
AE
ED
=
3
1+
x2
4

解得x=2
2
. 
∴此正三棱柱的侧棱长为2
2

(2)过E作EF⊥BD于F,连AF,
∵AE⊥侧面B1C1CB
∴AF⊥BD
∴∠AFE为二面角A-BD-C的平面角.
在Rt△BEF中,EF=BEsin∠EBF,又
BE=1,sin∠EBF=
CD
BC
=
2
22+
2
3
=
3
3

∴EF=
3
3

又AE=
3

∴在Rt△AEF中,
tan∠AFE=
AE
EF
=3
即二面角A-BD-C的平面角的正切值为3
点评:本题考查的知识点是正三棱柱的几何特征,二面角的平面角及求法,其中找出已知的线面夹角的平面角及未知的二面角的平面角是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为线段A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高位5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为
13
13
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点.
(1)试确定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大小;
(3)在(2)的条件下,求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1,D是AC的中点,C1DC=600,则异面直线AB1与C1D所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)如图,已知正三棱柱ABC-A1B1C1的所有棱长均为a,截面AB1C和A1BC1相交于DE,则三棱锥B-B1DE的体积为
3
48
a3
3
48
a3

查看答案和解析>>

同步练习册答案