精英家教网 > 高中数学 > 题目详情
7.如图是一个几何体的三视图,则该几何体的体积为10π+60.

分析 根据三视图知该几何体上半部是半个圆柱体,下半部是长方体,
结合图中数据求出它的体积.

解答 解:由三视图可知,该几何体上半部是
底面圆半径为2、高为5的半个圆柱体,
下半部是一个长、宽、高分别为5、4、3的长方体,
则其体积为
V几何体=V半圆柱体+V长方体
=$\frac{1}{2}$×π×22×5+5×4×3
=10π+60.
故答案为:10π+60.

点评 本题考查了由三视图求几何体体积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.△ABC中,BC=7,AB=3,且$\frac{sinC}{sinB}$=$\frac{3}{5}$.
(1)求AC的长;
(2)求∠A的大小;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.写出数列$-\frac{1}{2}$,$\frac{4}{3}$,$-\frac{9}{4}$,$\frac{16}{5}$,…的一个通项公式an=$(-1)^{n}•\frac{{n}^{2}}{n+1}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学为调查来自城市和农村的同龄高中学生的身高差异,从高三年级的18岁学生中随机抽取来自农村和城市的学生各10名,测量他们的身高,数据如下(单位:cm)
农村:166,158,170,169,180,171,176,175,162,163
城市:167,183,166,179,173,169,163,171,175,178
(I)根据抽测结果画出茎叶图,并根据你画的茎叶图对来自农村的高三学生与来自城市的高三学生的身高作比较,写出你的结论(不写过程,只写结论).
(II)若将样本频率视为总体的概率,现从样本中来自农村的身高不低于170的高三学生中随机抽取3名同学,求其中恰有两名同学的身高低于175的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.对任意的正整数n,以及任意n个互不相同的正整数a1,a2,…,an,若不等式${({\frac{1}{a_1}})^λ}+{({\frac{1}{a_2}})^λ}+…+{({\frac{1}{a_n}})^λ}<2$恒成立,求整数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设向量$\overrightarrow{a}$=(cosx,-sinx),$\overrightarrow{b}$=(-cos($\frac{π}{2}$-x),cosx),且$\overrightarrow{a}$=t$\overrightarrow{b}$,t≠0,则sin2x的值等于(  )
A.1B.-1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知四边形ABCD和BCGE均为直角梯形,AD∥BC,CE∥BG且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCGE,BC=CD=CE=2AD=2BG=2.
(1)求证:AG∥平面BDE;
(2)求三棱锥G-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,a2=3,则数列{an}的通项公式为${a_n}=\frac{{{n^2}+n}}{2}$.

查看答案和解析>>

同步练习册答案