精英家教网 > 高中数学 > 题目详情
17.各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,a2=3,则数列{an}的通项公式为${a_n}=\frac{{{n^2}+n}}{2}$.

分析 利用等差数列和等比数列中项的性质,运用等差数列的定义证明数列{$\sqrt{{b}_{n}}$}是等差数列.再利用等差数列的通项公式求出$\sqrt{{b}_{n}}$的通项公式,进而求出bn,an

解答 解:∵an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,
∴2bn=an+an+1①,
an+12=bn•bn+1②.
由②得an+1=$\sqrt{{b}_{n}{b}_{n+1}}$③.
将③代入①得,对任意n≥2,n∈N*
有2bn=$\sqrt{{b}_{n-1}{b}_{n}}$+$\sqrt{{b}_{n}{b}_{n+1}}$.
∵bn>0,
∴2$\sqrt{{b}_{n}}$=$\sqrt{{b}_{n-1}}$+$\sqrt{{b}_{n+1}}$,
∴{$\sqrt{{b}_{n}}$}是等差数列.
设数列{$\sqrt{{b}_{n}}$}的公差为d,
由a1=1,b1=2,a2=3,得b2=$\frac{9}{2}$.
∴$\sqrt{{b}_{1}}$=$\sqrt{2}$,$\sqrt{{b}_{2}}$=$\frac{3\sqrt{2}}{2}$,
d=$\sqrt{{b}_{2}}$-$\sqrt{{b}_{1}}$=$\frac{\sqrt{2}}{2}$.
∴$\sqrt{{b}_{n}}$=$\sqrt{2}$+$\frac{\sqrt{2}}{2}$(n-1)=$\frac{\sqrt{2}}{2}$(n+1),
∴bn=$\frac{1}{2}$(n+1)2
an=$\sqrt{{b}_{n-1}{b}_{n}}$=$\frac{1}{2}$n(n+1)=$\frac{{n}^{2}+n}{2}$.
故答案为:${a_n}=\frac{{{n^2}+n}}{2}$.

点评 本题考查了等差、等比数列的通项公式,利用构造等差数列法求得数列{$\sqrt{{b}_{n}}$}的通项公式是解答本题的突破口,本题还考查了学生的运算能力,运算要细心.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图是一个几何体的三视图,则该几何体的体积为10π+60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若二项式${({a{x^2}-\frac{1}{{\sqrt{x}}}})^6}({a>0})$展开式中的含x2的项的系数为60.则$\int{\begin{array}{l}a\\{-1}\end{array}}({{x^2}-2x})dx$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设k∈R,函数f(x)=lnx-kx.
(1)若k=2,求曲线y=f(x)在P(1,-2)处的切线方程;
(2)若f(x)无零点,求实数k的取值范围;
(3)若f(x)有两个相异零点x1,x2,求证:lnx1+lnx2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,面积为S的平面凸四边形的第i条边的边长为ai(i=1,2,3,4),此四边形内在一点P到第i条边的距离记为hi(i=1,2,3,4),若$\frac{a_1}{1}=\frac{a_2}{3}=\frac{a_3}{5}=\frac{a_4}{7}$=k,则h1+3h2+5h3+7h4=$\frac{2S}{k}$.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若$\frac{S_1}{1}=\frac{S_2}{3}=\frac{S_3}{5}=\frac{S_4}{7}$=K,H1+3H2+5H3+7H4=(  )
A.$\frac{V}{2K}$B.$\frac{2V}{K}$C.$\frac{3V}{K}$D.$\frac{V}{3K}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-ax(a∈R)有两个不同的零点.
(Ⅰ)求a的取值范围;
(Ⅱ)记两个零点分别为x1,x2,且x1<x2,已知λ>0,若不等式1+λ<lnx1+λlnx2恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{kx+3,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,若方程f(f(x))-2=0恰有三个实数根,则实数k的取值范围是(  )
A.[0,+∞)B.[1,3]C.(-1,-$\frac{1}{3}$]D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.意大利数学家列昂那多•斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3,n∈N*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{bn},b2017=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c为正数,且a+b+c=3,求$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$的最大值.

查看答案和解析>>

同步练习册答案