精英家教网 > 高中数学 > 题目详情
设函数fn(x)=1+x-
x2
2
+
x3
3
-…+
x2n-1
2n-1
,n∈N*
(1)讨论函数f2(x)的单调性;
(2)判断方程fn(x)=0的实数解的个数,并加以证明.
(1)f2(x)=1+x-
1
2
x2+
1
3
x3,f2′(x)=-1-x+x2=(x-
1
2
2+
3
4
>0,
所以f2(x)在R单调递增.
(2)f1(x)=1+x有唯一实数解x=-1
由fn(x)=1+x-
x2
2
+
x3
3
+…+
x2n-1
2n-1
,n∈N*
得fn′(x)=1-x+x2-…-x2n-3+x2n-2
(1)若x=-1,则fn′(x)=(2n-1)>0.
(2)若x=0,则fn′(x)=1>0.
(3)若x≠-1,且x≠0时,则fn′(x)=
x2n-1+1
x+1

①当x<-1时,x+1<0,x2n-1+1<0,fn′(x)>0.
②当x>-1时,fn′(x)>0
综合(1),(2),(3),得fn′(x)>0,
即fn(x)在R单调递增.          (10分)
又fn(0)=1>0,fn(-1)=1+(-1)-
1
2
+
1
3
-…-
1
2n-2
+
1
2n-1
<0,
所以fn(x)在(-1,0)有唯一实数解,从而fn(x)在R有唯一实数解.
综上,fn(x)=0有唯一实数解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,n∈N*
(Ⅰ)研究函数f2(x)的单调性并判断f2(x)=0的实数解的个数;
(Ⅱ)判断fn(x)=0的实数解的个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)设函数fn(x)=1+x-
x2
2
+
x3
3
-…+
x2n-1
2n-1
,n∈N*
(1)讨论函数f2(x)的单调性;
(2)判断方程fn(x)=0的实数解的个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数fn(x)=-1+x+
x2
22
+
x3
32
++
xn
n2
(x∈R,n∈N+
),证明:
(1)对每个n∈N+,存在唯一的xn∈[
2
3
,1]
,满足fn(xn)=0;
(2)对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn-xn+p
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=1+
x
1!
+
x2
2!
+…+
xn
n!
,n∈N*

(1)证明:e-xf3(x)≤1;
(2)证明:当n为偶数时,函数y=fn(x)的图象与x轴无交点;当n为奇数时,函数y=fn(x)的图象与x轴有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源:2013年安徽省高考数学试卷(理科)(解析版) 题型:解答题

设函数fn(x)=-1+x+),证明:
(1)对每个n∈N+,存在唯一的xn,满足fn(xn)=0;
(2)对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn-xn+p

查看答案和解析>>

同步练习册答案