4£®Ä³¹«Ë¾ÊÇÒ»¼Òר×ö²úÆ·AµÄ¹úÄں͹úÍâͬ²½ÏúÊ󵀮óÒµ£¬Ã¿Ò»Åú²úÆ·AÉÏÊÐÏúÊÛ40Ìì¾Í¿ÉÒÔÈ«²¿ÊÛÍ꣬¸Ã¹«Ë¾¶ÔµÚÒ»Åú²úÆ·AÉÏÊкóµÄ¹úÄÚÍâÊг¡µÄÏúÊÛÇé¿ö½øÐÐÁ˸ú×Ùµ÷²é£¬µ÷²é½á¹ûÈçͼ¢Ù¡¢Í¼¢Ú¡¢Í¼¢ÛËùʾ£¬ÆäÖÐͼ¢ÙÖеÄÕÛÏß±íʾµÄÊǹúÄÚÊг¡µÄÈÕÏúÊÛÁ¿ÓëÉÏÊÐʱ¼äµÄ¹ØÏµ£»Í¼¢ÚÖеÄÅ×ÎïÏß±íʾ¹úÍâÊг¡µÄÈÕÏúÊÛÁ¿ÓëÉÏÊÐʱ¼äµÄ¹ØÏµ£»Í¼¢ÛÖеÄÕÛÏß±íʾµÄÊÇÿ¼þ²úÆ·AµÄÏúÊÛÀûÈóÓëÉÏÊÐʱ¼äµÄ¹ØÏµ£¨¹úÄÚÍâÊг¡Ïàͬ£©£®

£¨1£©·Ö±ðд³ö¹úÄÚÊг¡µÄÈÕÏúÊÛÁ¿f£¨t£©¡¢¹úÍâÊг¡µÄÈÕÏúÊÛÁ¿g£¨t£©ÓëµÚÒ»Åú²úÆ·AµÄÉÏÊÐʱ¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³öÿ¼þ²úÆ·AµÄÏúÊÛÀûÈóq£¨t£© ÓëµÚÒ»Åú²úÆ·AµÄÉÏÊÐʱ¼äµÄº¯Êý¹ØÏµÊ½£»
£¨2£©µÚÒ»Åú²úÆ·AÉÏÊкó£¬ÎÊÄÄÒ»ÌìÕâ¼Ò¹«Ë¾µÄÈÕÏúÊÛÀûÈó×î´ó£¿×î´óÊǶàÉÙ£¿

·ÖÎö £¨1£©¸ù¾ÝͼÏóд³ö·Ö¶Îº¯Êý¼´¿É£»
£¨2£©Í¨¹ýд³öÕâ¼Ò¹«Ë¾µÄÈÕÏúÊÛÀûÈóQ£¨t£©µÄ½âÎöʽ£¬·ÖÇé¿öÌÖÂÛ¼´¿É£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬f£¨t£©=$\left\{\begin{array}{l}{2t£¬}&{0¡Üt¡Ü30}\\{-6t+240£¬}&{30£¼t¡Ü40}\end{array}\right.$£¬
g£¨t£©=-$\frac{3}{20}$t2+6t£¬0¡Üt¡Ü40£¬
q£¨t£©=$\left\{\begin{array}{l}{3t£¬}&{0¡Üt¡Ü20}\\{60£¬}&{20£¼t¡Ü40}\end{array}\right.$£»
£¨2£©Õâ¼Ò¹«Ë¾µÄÈÕÏúÊÛÀûÈóQ£¨t£©µÄ½âÎöʽ£º
Q£¨t£©=$\left\{\begin{array}{l}{-\frac{9}{20}{t}^{3}+24{t}^{2}£¬}&{0¡Üt¡Ü20}\\{-9{t}^{2}+480t£¬}&{20£¼t¡Ü30}\\{-9{t}^{2}+14400£¬}&{30£¼t¡Ü40}\end{array}\right.$£¬
¢Ùµ±0¡Üt¡Ü20ʱ£¬Q¡ä£¨t£©=-$\frac{27}{20}$t2+48t=$\frac{t£¨20•48-27t£©}{20}$¡Ý0£¬
´Ó¶øQ£¨t£©ÔÚÇø¼ä[0£¬20]Éϵ¥µ÷µÝÔö£¬
´ËʱQ£¨t£©max=Q£¨20£©=6000£»
¢Úµ±20£¼t¡Ü30ʱ£¬Q£¨t£©=-9$£¨t-\frac{80}{3}£©^{2}$+6400£¬
´Ó¶øQ£¨t£©max=Q£¨27£©=6399£»
¢Ûµ±30£¼t¡Ü40£¬Q£¨t£©£¼Q£¨30£©=6300£»
×ÛÉÏËùÊö£¬Q£¨t£©max=Q£¨27£©=6399£®
´ð£ºµÚ27ÌìÕâ¼Ò¹«Ë¾µÄÈÕÏúÊÛÀûÈó×î´ó£¬×î´óֵΪ6399Ôª£®

µãÆÀ ±¾Ì⿼²éº¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦Ó㬿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬עÒâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Çóy=$\frac{1}{\sqrt{9-x}}$µÄ¶¨ÒåÓò£¨ÓÃÇø¼ä±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Å×ÖÀһö÷»×Ó£¬¼ÇʼþAΪ¡°ÂäµØÊ±ÏòÉϵÄÊýÊÇÆæÊý¡±£¬Ê¼þBΪ¡°ÂäµØÊ±ÏòÉϵÄÊýÊÇżÊý¡±£¬Ê¼þCΪ¡°ÂäµØÊ±ÏòÉϵÄÊýÊÇ2µÄ±¶Êý¡±£¬Ê¼þDΪ¡°ÂäµØÊ±ÏòÉϵÄÊýÊÇ4µÄ±¶Êý¡±£¬ÔòÏÂÁÐÿ¶ÔʼþÊÇ»¥³âʼþµ«²»ÊǶÔÁ¢Ê¼þµÄÊÇ£¨¡¡¡¡£©
A£®AÓëBB£®BÓëCC£®AÓëDD£®BÓëD

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®µ±x¡ú1ʱ£¬k£¨1-x2£©Óë1-$\root{3}{x}$ÊǵȼÛÎÞÇîС£¬ÆäÖеij£ÊýkÓ¦ÈçºÎÑ¡Ôñ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èôf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{2}x£¬0£¼x¡Ü1}\\{\frac{{x}^{2}+2}{2x}£¬x£¾1}\end{array}\right.$£¬Èô·½³Ìf£¨x£©=k£¨x-1£©ÓÐÁ½¸öʵ¸ù£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨$\frac{1}{2}$£¬$\frac{1}{ln2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈçͼÊǺ¯Êý$f£¨x£©=Asin£¨2x+ϕ£©£¬£¨A£¾0£¬|ϕ|¡Ü\frac{¦Ð}{2}£©$ͼÏóµÄÒ»²¿·Ö£¬¶Ô²»Í¬µÄx1£¬x2¡Ê[a£¬b]£¬Èôf£¨x1£©=f£¨x2£©£¬ÓÐ$f£¨{x_1}+{x_2}£©=\sqrt{2}$£¬Ôò£¨¡¡¡¡£©
A£®f£¨x£©ÔÚ$£¨-\frac{3¦Ð}{8}£¬\frac{¦Ð}{8}£©$ÉÏÊÇÔöº¯ÊýB£®f£¨x£©ÔÚ$£¨-\frac{3¦Ð}{8}£¬\frac{¦Ð}{8}£©$ÉÏÊǼõº¯Êý
C£®f£¨x£©ÔÚ$£¨-\frac{5¦Ð}{12}£¬\frac{¦Ð}{12}£©$ÉÏÊÇÔöº¯ÊýD£®f£¨x£©ÔÚ$£¨-\frac{5¦Ð}{12}£¬\frac{¦Ð}{12}£©$ÉÏÊǼõº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=x2-1£¬Èô¹ØÓÚxµÄ·½³Ì|f£¨x£©|2+m|f£¨x£©|+2m+3=0ÔÚ£¨0£¬+¡Þ£©ÉÏÓÐÁ½¸ö²»Í¬µÄ½â£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¶¨ÒåijÖÖÔËËã?£¬S=a?bµÄÔËËãÔ­ÀíÈçͼ£¬Ôòʽ×Ó6?3+3?4=20£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{-x}-1£¬x¡Ü0}\\{\frac{1}{2}x£¬x£¾0}\end{array}\right.$
£¨1£©Èôf£¨a£©=3£¬ÇóʵÊýaµÄÖµ£»
£¨2£©Èôf£¨x£©£¾1£¬ÇóʵÊýxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸