分析 先根据k(1-x2)与1-$\root{3}{x}$是等价无穷小得出:$\underset{lim}{x→1}$$\frac{k(1-x^2)}{1-\root{3}{x}}$=1,再对该式求极限,进而求出k的值.
解答 解:∵x→1时,k(1-x2)与1-$\root{3}{x}$是等价无穷小,
∴$\underset{lim}{x→1}$$\frac{k(1-x^2)}{1-\root{3}{x}}$=1,其中,
分子=k(1-x2)=k(1-x)(1+x),
分母=1-$\root{3}{x}$=$\frac{1-x}{1+\root{3}{x}+\root{3}{x^2}}$,
因此,$\underset{lim}{x→1}$$\frac{k(1-x^2)}{1-\root{3}{x}}$=$\underset{lim}{x→1}$[k(1+x)(1+$\root{3}{x}$+$\root{3}{x^2}$)]=6k=1,
解得k=$\frac{1}{6}$,
故当k=$\frac{1}{6}$,x→1时,k(1-x2)与1-$\root{3}{x}$是等价无穷小.
点评 本题主要考查了运用极限判断两个量的“等价无穷小”,用到因式分解,消除零因子,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | $\frac{16}{3}$ | C. | 3 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com