精英家教网 > 高中数学 > 题目详情
如图,已知
AD
=3
AB
DE
=3
BC
.试判断
AC
AE
是否共线.
考点:平行向量与共线向量
专题:平面向量及应用
分析:根据题意,求出
AE
=3
AC
,判断
AC
AE
共线.
解答: 解:根据题意,
AD
=3
AB
DE
=3
BC

AC
=
AB
+
BC

AE
=
AD
+
DE

=3
AB
+3
BC

=3(
AB
+
BC

=3
AC

AC
AE
共线.
点评:本题考查了平面向量共线定理的应用问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>0,用作商法比较x2+3x+2与x+2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长均相等的正三棱柱ABC-A1B1C1中,D为BC的中点.
(1)求证:A1B∥平面AC1D;
(2)求C1C与平面AC1D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角θ的终边经过点P(-4cosα,3cosα),α∈{α|π<α<2π,α≠
2
},则sinθ+cosθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
e2
1
3
x
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定的函数f(x)=2x-2-x,有下列四个结论:
①f(x)的图象关于原点对称;
②f(x)在R上是增函数;
③f(x)的图象关于y轴对称;
④f(x)的最小值为0.
其中正确的个数有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面是边长为a的正方形,PD⊥底面ABCD,PD=DC,E、F分别是AB、PB的中点,
(1)PB与CD所成的角的正弦值;
(2)DB与平面DEF所成的面的余弦值;
(3)点B到平面DEF的距离;
(4)二面角F-DE-B的大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+ax+b=x}={a},幂函数f(x)经过点(a,b),
(Ⅰ)求集合A;
(Ⅱ)求不等式f(x)≤x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
m2-3
=
10
4
,则m=
 

查看答案和解析>>

同步练习册答案