精英家教网 > 高中数学 > 题目详情

【题目】汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”(如下图)四个全等的直角三角形(朱实),可以围成一个大的正方形,中空部分为一个小正方形(黄实).若直角三角形中一条较长的直角边为8,直角三角形的面积为24,若在上面扔一颗玻璃小球,则小球落在黄实区域的概率为( )

A. B. C. D.

【答案】C

【解析】

根据直角三角形中一条较长的直角边为8,直角三角形的面积为24,可得另外一条直角边长为6,从而可得大小正方形的面积,利用几何概型概率公式求解即可.

因为直角三角形中一条较长的直角边为8,直角三角形的面积为24,

所以可得另外一条直角边长为6,

所以小正方形的边长为

黄实区域的面积为

大正方形的面积是

所以小球落在黄实区域的概率是故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推例如6613用算筹表示就是 ,则26337用算筹可表示为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线的右焦点,左支上一点,),当周长最小时,则点的纵坐标为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=Acosωx+φ)(A0ω0φ0)的图象与y轴的交点为(01),它的一个最高点和一个最低点的坐标分别为(x02),(x0,﹣2),

1)若函数fx)的最小正周期为π,求函数fx)的解析式;

2)当x∈(x0x0)时,fx)图象上有且仅有一个最高点和一个最低点,且关于x的方程fx)﹣a0在区间[]上有且仅有一解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.

问:(1)这个几何体是什么?

(2)这个几何体由几个面构成?每个面的三角形是什么三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.

如图1 如图2

(1)证明:平面平面

(2)若平面平面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )

(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;

(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速;

(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10四面体ABCD及其三视图如图所示平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH

1求四面体ABCD的体积

2证明四边形EFGH是矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车“定速巡航”技术是用于控制汽车的定速行驶,当汽车被设定为定速巡航状态时,电脑根据道路状况和汽车的行驶阻力自动控制供油量,使汽车始终保持在所设定的车速行驶,而无需司机操纵油门,从而减轻疲劳,促进安全,节省燃料.某汽车公司为测量某型号汽车定速巡航状态下的油耗情况,选择一段长度为240km的平坦高速路段进行测试.经多次测试得到一辆汽车每小时耗油量F(单位:L)与速度v(单位:km/h)()的下列数据:

v

0

40

60

80

120

F

0

10

20

为了描述汽车每小时耗油量与速度的关系,现有以下三种函数模型供选择:

.

1)请选出你认为最符合实际的函数模型,并求出相应的函数解析式.

2)这辆车在该测试路段上以什么速度行驶才能使总耗油量最少?

查看答案和解析>>

同步练习册答案