| A. | $\frac{1}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
分析 由于给出“序数”是指在一个数中,每一位数字比其左边的一位数字大,理解正确新定义,由于要求二位的序数中比56大的概率,属于古典概型,应线求出所有的二位序数的个数,求出比56 大的所有的二位序数即可.
解答 解:因为“序数”是指在一个数中,每一位数字比其左边的一位数字大,
利用二位数的特点可知所有的二位数共:9×10=90,
而二位数中“序数”的个数为:8+7+6+5+4+3+2+1=36个,
对于所有二位“序数”中比56大的有:57,58,59,67,68,69,78,79,89总共9个,
所以比56大的二位“序数“的概率为:$\frac{9}{36}$=$\frac{1}{4}$,
故选:A.
点评 此题考查了学生对于新定义的理解,两位数的特点古典事件的概率公式及学生的计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{4}$) | B. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{4}$] | C. | [0,-$\frac{\sqrt{3}}{4}$] | D. | (-$\frac{2}{3}$,-$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 99 | C. | 120 | D. | 121 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a2-a+1)<$f(\frac{3}{4})$ | B. | f(a2-a+1)>$f(\frac{3}{4})$ | C. | f(a2-a+1)≤$f(\frac{3}{4})$ | D. | f(a2-a+1)≥$f(\frac{3}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 顾客人数/商品 | 甲 | 乙 | 丙 | 丁 |
| 100 | √ | × | √ | √ |
| 217 | × | √ | × | √ |
| 200 | √ | √ | √ | × |
| 300 | √ | × | √ | × |
| 85 | √ | × | × | × |
| 98 | × | √ | × | × |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com