精英家教网 > 高中数学 > 题目详情
11.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.
顾客人数/商品
100×
217××
200×
300××
85×××
98×××
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?

分析 (1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.
(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.
(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.

解答 解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,
故顾客同时购买乙和丙的概率为$\frac{200}{1000}$=0.2.
(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),
故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为$\frac{300}{1000}$=0.3.
(3)在这1000名顾客中,同时购买甲和乙的概率为$\frac{200}{1000}$=0.2,
同时购买甲和丙的概率为 $\frac{100+200+300}{1000}$=0.6,
同时购买甲和丁的概率为 $\frac{100}{1000}$=0.1,
故同时购买甲和丙的概率最大.

点评 本题主要考查古典概率、互斥事件的概率加法公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.把正整数1,2,3,4,5,6,…按某种规律填入如表:
261014
145891213
371115
按这种规律连续填写,2015出现在第3行,第1511 列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“序数”指每个数字比其左边的数字大的自然数(如1258),在两位的“序数”中任取一个数比56大的概率是(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在以点O为圆心,1为半径的半圆弧上任取一点B,如图,则△AOB的面积大于<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>14$\frac{1}{4}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}的前n项和为Sn=3n,则an=$\left\{\begin{array}{l}{3,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>$\frac{1}{2}$时,f(x+$\frac{1}{2}$)=f(x-$\frac{1}{2}$),则f(2016)=(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{3}$+y2=1,已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知cos(α-$\frac{π}{3}$)=$\frac{4}{5}$,则cos(α+$\frac{7π}{6}$)的值是±$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+ax在x=0与x=1处的切线互相垂直.
(1)若函数g(x)=f(x)+$\frac{b}{2}$lnx-bx在(0,+∞)上单调递增,求a,b的值;
(2)设函数h(x)=$\left\{\begin{array}{l}-ln(1-x),x≤0\\ f(x),x>0\end{array}$,若方程h(x)-k(x-1)=0有四个不相等的实数根,求k的取值范围.

查看答案和解析>>

同步练习册答案