精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{x^2}{3}$+y2=1,已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

分析 把直线的方程与椭圆的方程联立,转化为关于x的一元二次方程,得到根与系数的关系,假设以CD为直径的圆过E点,则CE⊥DE,将它们联立消去x1,x2即可得出k的值.

解答 解:假若存在这样的k值,由$\left\{\begin{array}{l}y=kx+2\\{x^2}+3{y^2}-3=0\end{array}\right.$得(1+3k2)x2+12kx+9=0.
∴△=(12k)2-36(1+3k2)>0.                    ①
设C(x1,y1)、D(x2,y2),则$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{12k}{{1+3{k^2}}}\\{x_1}•{x_2}=\frac{9}{{1+3{k^2}}}\end{array}\right.$②
而${y_1}•{y_2}=(k{x_1}+2)(k{x_2}+2)={k^2}{x_1}{x_2}+2k({x_1}+{x_2})+4$.
要使以CD为直径的圆过点E(-1,0),当且仅当CE⊥DE时,则$\frac{y_1}{{{x_1}+1}}•\frac{y_2}{{{x_2}+1}}=-1$,即y1y2+(x1+1)(x2+1)=0.
∴(k2+1)x1x2+2(k+1)(x1+x2)+5=0.               ③
将②式代入③整理解得$k=\frac{7}{6}$.经验证,$k=\frac{7}{6}$,使①成立.
综上可知,存在$k=\frac{7}{6}$,使得以CD为直径的圆过点E.

点评 本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知△ABC的三个内角;A,B,C所对边分别为;a,b,c,若b2+c2<a2,且cos2A-3sinA+1=0,则sin(C-A)+$\frac{\sqrt{3}}{2}$cos(2A-B)的取值范围为(  )
A.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{4}$)B.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{4}$]C.[0,-$\frac{\sqrt{3}}{4}$]D.(-$\frac{2}{3}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知偶函数f(x)的定义域为R,且在(-∞,0)上是增函数,则f(a2-a+1)与f($\frac{3}{4}$)的大小关系为(  )
A.f(a2-a+1)<$f(\frac{3}{4})$B.f(a2-a+1)>$f(\frac{3}{4})$C.f(a2-a+1)≤$f(\frac{3}{4})$D.f(a2-a+1)≥$f(\frac{3}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.
顾客人数/商品
100×
217××
200×
300××
85×××
98×××
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1的图象向左平移$\frac{π}{8}$个单位长度,再向下平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质①③.(填入所有正确性质的序号)
①最大值为$\sqrt{2}$,图象关于直线x=$\frac{3π}{4}$对称;
②在(-$\frac{π}{2}$,0)上单调递增,且为偶函数;
③最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=45°,AB=2CD=4,M为腰BC的中点,则$\overrightarrow{MA}$•$\overrightarrow{MD}$=(  )
A.10B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合M={x|y=$\sqrt{1-x}$},则∁UM=(  )
A.(-∞,1)B.(-∞,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛掷一枚质地均匀的硬币两次,则出现一正一反的概率(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从某市高三数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图如图:
(Ⅰ)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(Ⅱ)若用分层抽样的方法从分数在[30,50)和[130,150)的学生中共抽取3人,该3人中分数在[130,150)的有几人?
(Ⅲ)从(Ⅱ)中抽取的3人中,随机抽取2人,求分数在[30,50)和[130,150)各1人的概率.

查看答案和解析>>

同步练习册答案