精英家教网 > 高中数学 > 题目详情
8.1+3+32+…+3101被4除所得的余数为(  )
A.0B.1C.2D.3

分析 利用等比数列的求和公式、二项式定理即可得出.

解答 解:1+3+32+…+3101=$\frac{{3}^{102}-1}{3-1}$=$\frac{1}{2}×(4-1)^{102}$-$\frac{1}{2}$=$\frac{1}{2}({4}^{102}-{4}^{101}+…-{4}^{3}+{4}^{2}-4+1)$-$\frac{1}{2}$
=2(4101-4100+…-42)+4+2,
1+3+32+…+3101被4除所得的余数为2.
故选:C.

点评 本题考查了等比数列的求和公式、二项式定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{3}$,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$\sqrt{7}$B.2$\sqrt{7}$C.6$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等比数列{an}的首项a1、公比q,且${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求数列{an}的通项公式;
(2)设${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}为递增数列.若${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a>b>0,则下列不等式成立的是(  )
A.|b-a|≥1B.2a<2bC.lg$\frac{a}{b}$<0D.0<$\frac{b}{a}$<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知离心率为$\frac{1}{2}$ 的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,右焦点为F,且|AF|=3.
(1)求椭圆C的方程;
(2)若过点F的直线交椭圆于B、C两点,设直线AB和AC分别与直线x=4交于点M,N,问x轴上是否存在定点P使得MP⊥NP?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面四个命题正确的是(  )
A.第一象限角必是锐角B.小于90°的角是锐角
C.若α>β,则sinα>sinβD.锐角必是第一象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知P(4,0)是圆x2+y2=36内一点,A,B是圆上两动点,且满足∠APB=90°,则矩形APBQ的顶点Q的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=sinx+$\sqrt{3}$cosx(x∈[0,$\frac{π}{2}}$])的单调递增区间是[0,$\frac{π}{6}$],最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|0<x<2},B={x|-1<x<1},则(∁RA)∩B=(  )
A.{x|0≤x≤1}B.{x|1≤x<2}C.{x|-1<x≤0}D.{x|0≤x<1}

查看答案和解析>>

同步练习册答案