分析 将方程f(x)-g(x)=1有三个实根转化为函数y=f(x)-1与y=g(x)的图象有三个交点,画出两个函数的图象,然后根据图象确定a的取值范围
解答 ∵f(x)-g(x)=1在[a,+∞)上有三个实根
∴f(x)-1=g(x)在[a,+∞)上有三个实根
∴函数y=f(x)-1与y=g(x)的图象在x∈[a,+∞)上有三个交点
作出y=f(x)-1和y=g(x)的图象![]()
从图象可知,0<xA<1,yA=0;xB>1,xC>1
令f(x)-1=|log2x|-1=0,得x=$\frac{1}{2}$,或x=2,故${x}_{A}=\frac{1}{2}$
∴$a≤\frac{1}{2}$
又∵a为正实数
∴$0<a≤\frac{1}{2}$,
故答案为:$(0,\frac{1}{2}]$
点评 本题考查了方程根的个数问题以及分段函数的图象,将方程根的个数转化为两函数图象交点的个数,从而利用数形结合思想求出a的取值范围,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1<a<4 | B. | 1<a≤2 | C. | 0<a<1 | D. | 2<a<4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①②③ | D. | ①③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若数列{an}是公差为1的等差数列,则数列{an+3} 是公差为4的等差数列 | |
| B. | 数列6,4,2,0 是公差为2的等差数列 | |
| C. | 若数列{an}等差,Sn是其前n项和,则数列$\{\frac{S_n}{n}\}$也等差 | |
| D. | 4与6的等差中项是±5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>0 | B. | 0<m<1 | C. | m>1 | D. | m>0且m≠1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com