5£®¸ø³öÒÔÏÂÃüÌ⣺
¢ÙÈôa£¾b£¾0£¬d£¼c£¼0£¬$\frac{{\sqrt{a}}}{c}£¼\frac{{\sqrt{b}}}{d}$£»
¢ÚÈç¹ûp1•p2¡Ý4$\sqrt{{q_1}{q_2}}$£¬Ôò¹ØÓÚxµÄʵϵÊý¶þ´Î·½³Ìx2+p1x+q1=0£¬x2+p2x+q2=0ÖÐÖÁÉÙÓÐÒ»¸ö·½³ÌÓÐʵ¸ù£»
¢ÛÈôx¡Ùk¦Ð£¬k¡ÊZ£¬Ôòsinx+$\frac{1}{sinx}$¡Ý2£»
¢Üµ±x¡Ê£¨0£¬2]ʱ£¬f£¨x£©=x-$\frac{1}{x}$ÎÞ×î´óÖµ£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ú¢ÛC£®¢Ù¢Ú¢ÛD£®¢Ù¢Û¢Ü

·ÖÎö ÖðÏîÅжÏ4¸öÃüÌâµÄÕýÎ󣮢ÙÀûÓò»µÈʽµÄ»ù±¾ÐÔÖʼ´¿ÉÇó½â£»¢ÚÕýÈ·Àí½â¡°ÖÁÉÙÒ»¸ö¡±£®¿É´Ó·´ÃæÀ´Çó£¬Ò׵㻢Û×¢Òâ»ù±¾²»µÈʽµÄǰÌᣬ¼´¿ÉÅжϣ»¢ÜÓÉÒÑÖªº¯ÊýµÄµ¥µ÷ÐÔÒ׵ã®

½â´ð ½â£º¢Ù¡ßa£¾b£¾0£¬¡à$\sqrt{a}£¾\sqrt{b}$£¬
ÓÖd£¼c£¼0£¬¡à$\frac{1}{d}£¼0£¬\frac{1}{c}£¼0$ÇÒ$\frac{1}{d}£¾\frac{1}{c}$£¬
¡à$-\frac{1}{c}£¾-\frac{1}{d}£¾0$£¬
¡à$\sqrt{a}•£¨-\frac{1}{c}£©£¾\sqrt{b}•£¨-\frac{1}{d}£©$£¬
¡à$\frac{\sqrt{a}}{c}£¼\frac{\sqrt{b}}{d}$£¬¹Ê¢ÙÕýÈ·£»
¢ÚÃüÌâµÄÄæ·ñÃüÌâΪ£ºÈôÁ½¸ö·½³Ì¶¼ÎÞʵ¸ù£¬Ôò${{p}_{1}p}_{2}£¼4\sqrt{{{q}_{1}q}_{2}}$£¬
ÈôÁ½¸ö·½³Ì¶¼ÎÞʵ¸ù£¬ÔòÓÐ$\left\{\begin{array}{l}{{¡÷}_{1}{{=p}_{1}}^{2}-{4q}_{1}£¼0}\\{{¡÷}_{2}{{=p}_{2}}^{2}-{4q}_{2}£¼0}\end{array}\right.$£¬
¡à${{p}_{1}}^{2}£¼{4q}_{1}$£¬${{q}_{2}}^{2}£¼{4q}_{2}$£¬¡à${{p}_{1}}^{2}{{•p}_{2}}^{2}£¼1{{6q}_{1}q}_{2}$£¬¡à${{p}_{1}p}_{2}£¼4\sqrt{{{q}_{1}q}_{2}}$£¬¹ÊÆäÄæÃüÌâÕýÈ·£¬ËùÒÔÔ­ÃüÌâÕýÈ·£¬¼´¢ÚÕýÈ·£»
¢ÛÈ¡$x=-\frac{¦Ð}{2}$¡Ùk¦Ð£¬´Ëʱ$sinx+\frac{1}{sinx}=-2£¼2$£¬¹Ê¢Û´íÎó£»
¢Ü¡ßº¯Êý$f£¨x£©=x-\frac{1}{x}$ÔÚ£¨0£¬2]ÉÏÊÇÔöº¯Êý£¬ËùÒÔº¯ÊýÔÚ£¨0£¬2]ÉÏÓÐ×î´óÖµf£¨2£©=$\frac{3}{2}$£¬¹Ê¢Ü´íÎó£®
×ÛÉÏ¿ÉÖª£¬¢Ù¢ÚÕýÈ·¹ÊÑ¡A£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é²»µÈʽÐÔÖÊ£¬»ù±¾²»µÈʽºÍº¯ÊýµÄµ¥µ÷ÐÔ£®ÊôÓÚÒ×´íÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®É躯Êýf£¨x£©=a-$\frac{2}{{2}^{x}+1}$£¬x¡ÊR£¬aΪ³£Êý£»
£¨1£©µ±a=1ʱ£¬ÅжÏf£¨x£©µÄÆæÅ¼ÐÔ£»
£¨2£©ÇóÖ¤£ºf£¨x£©ÊÇRÉϵÄÔöº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®f£¨x£©=x2+ax+1ÔÚ£¨1£¬+¡Þ£©Îªµ¥µ÷µÝÔö£¬ÔòaµÄȡֵ·¶Î§ÊÇ[-2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®¶¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êýf£¨x£©Âú×ãµ±0£¼x¡Ü1ʱ£¬f£¨x£©=$\frac{2^x}{{{4^x}+1}}$£¬
£¨1£©Çóf£¨x£©ÔÚ[-1£¬1]ÉϵĽâÎöʽ£»
£¨2£©Åжϲ¢Ö¤Ã÷f£¨x£©ÔÚ[-1£¬0£©Éϵĵ¥µ÷ÐÔ£»
£¨3£©£©µ±x¡Ê£¨0£¬1]ʱ£¬·½³Ì$\frac{2^x}{f£¨x£©}$-2x-m=0Óн⣬ÊÔÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺f¡ä£¨x£©-f£¨x£©=x•ex£¬ÇÒf£¨0£©=$\frac{1}{2}$£¬Ôò$\frac{f¡ä£¨x£©}{f£¨x£©}$µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®0B£®$\frac{1}{2}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªµãA£¨1£¬0£©ÔÚ¾ØÕóM=$[\begin{array}{l}{a}&{1}\\{b}&{0}\end{array}]$£¨b£¾0£©¶ÔÓ¦µÄ±ä»»Ïµõ½µãP£¬Èô¡÷POAµÄÃæ»ýΪ$\sqrt{3}$£¨OÎª×ø±êÔ­µã£©£¬¡ÏPOA=60¡ã£¬Çóa£¬bµÄÖµ£¬²¢Ð´³öMµÄÄæ¾ØÕó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®É躯Êýf£¨x£©=ax2+£¨b-2£©x+3£¨a¡Ù0£©£¬f£¨x£©Âú×ãf£¨x+1£©-f£¨x£©=2x-1
£¨¢ñ£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Éèg£¨x£©=f£¨x£©-mx£¬Èô¶ÔÈÎÒâµÄx1£¬x2¡Ê[1£¬2]£¬¶¼ÓÐ|g£¨x1£©-g£¨x2£©|¡Ü2³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=|log2x|£¬g£¨x£©=$\left\{{\begin{array}{l}{0£¬0£¼x¡Ü1}\\{\frac{1}{8}|{{x^2}-9}|£¬x£¾1}\end{array}}$£¬Èô·½³Ìf£¨x£©-g£¨x£©=1ÔÚ[a£¬+¡Þ£©ÉÏÓÐÈý¸öʵ¸ù£¬ÔòÕýʵÊýaµÄȡֵ·¶Î§Îª£¨0£¬$\frac{1}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¹ýÅ×ÎïÏßx2=2py£¨p£¾0ÇÒΪ³£Êý£©µÄ½¹µãF×÷бÂÊΪ1µÄÖ±Ïߣ¬½»Å×ÎïÏßÓÚA£¬BÁ½µã£¬ÇóÖ¤£ºÏß¶ÎABµÄ³¤Îª¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸