精英家教网 > 高中数学 > 题目详情

已知椭圆C:上动点到定点,其中的距离的最小值为1.(1)请确定M点的坐标(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在,求出的方程,若不存在请说是理由。
(1,0);这样的直线不存在。
【思维分析】此题解题关键是由条件从而将条件转化点的坐标运算再结合韦达定理解答。
解析:设,由由于故当时,的最小值为此时,当时,取得最小值为解得不合题意舍去。综上所知当是满足题意此时M的坐标为(1,0)。
(2)由题意知条件等价于,当的斜率不存在时,与C的交点为,此时,设的方程为,代入椭圆方程整理得,由于点M在椭圆内部故恒成立,由,据韦达定理得代入上式得不合题意。综上知这样的直线不存在。
【知识点归类点拔】在解题过程中要注意将在向量给出的条件转化向量的坐标运算,从而与两交点的坐标联系起来才自然应用韦达定理建立起关系式。此题解答具有很强的示范性,请同学们认真体会、融会贯通。
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若椭圆=1(ab>0)与直线l: x+y=1在第一象限内有两个不同的交点,求ab所满足的条件,并画出点P(a,b)的存在区域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图, 共顶点的椭圆①,②与双曲线③,④的离心率分别
,其大小关系为 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,为两等腰直角三角形,C(a,0)(a>0).设的外接圆圆心分别为,

(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;
(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程;
(Ⅲ)是否存在这样的⊙N,使得⊙N上有且只有三个点到直线AB的距离为,若存在,求此时⊙N的标准方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线方程为,P为双曲线上任意一点,F为双曲线的一个焦点,讨论以|PF|为直径的圆与圆x2+y2=a2的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A、B是过抛物线焦点F的直线与抛物线的交点,O是坐标原点,满足,则的值为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的中心在原点,离心率为,若它的一条准线与抛物线的准线重合,则该双曲线的方程是(     )  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题




A.B.C.D.

查看答案和解析>>

同步练习册答案