精英家教网 > 高中数学 > 题目详情
8.若正数x、y满足2x+y-3=0,则$\frac{2}{x}$+$\frac{1}{y}$的最小值为(  )
A.2B.3C.4D.5

分析 利用“乘1法”基本不等式的性质即可得出.

解答 解:正数x、y满足2x+y-3=0,
即2x+y=3,
则$\frac{2}{x}$+$\frac{1}{y}$=$\frac{1}{3}$(2x+y)($\frac{2}{x}$+$\frac{1}{y}$)=$\frac{1}{3}$(4+1+$\frac{2y}{x}$+$\frac{2y}{y}$)≥$\frac{1}{3}$(5+2$\sqrt{\frac{2y}{x}•\frac{2x}{y}}$)=3,当且仅当x=y=$\frac{1}{3}$时取等号,
故选:B.

点评 本题考查了“乘1法”和基本不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知:-$\frac{3π}{2}$<x<-π,tanx=-3. 
(Ⅰ)求 sinx•cosx的值;
(Ⅱ)求$\frac{sin(360°-x)•cos(180°-x)-si{n}^{2}x}{cos(180°+x)•cos(90°-x)+co{s}^{2}x}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一支田径队有男运动员49人,女运动员35人,用分层抽样的方法从全体运动员中抽出一个容量为24的样本,则应从男运动员中抽出的人数为(  )
A.10B.12C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.四面体D-ABC中,AB=BC,在侧面DAC中,中线AN⊥中线DM,且DB⊥AN.
(1)求证:MN∥面DAB;
(2)平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若向量$\overrightarrow{a}$=(1,0,-1),则与$\overrightarrow{a}$共线的向量是(  )
A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在正方形ABCD中,点E在边AD上(端点除外),现将△ABE沿直线BE翻折至△A′BE,连结A′C、A′D,记二面角A′-BE-C为α(0<α<π),则(  )
A.存在α,使得A′E⊥面A′BCB.存在α,使得A′B⊥面A′CD
C.存在α,使得A′E⊥面A′CDD.存在α,使得A′B⊥面A′DE

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数x,y 满足$\frac{1}{si{n}^{2}y}+\frac{1}{co{s}^{2}y}$=2${\;}^{x-{e}^{x-1}+2}$,则$\frac{ta{n}^{2}y}{2x}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$θ∈(\frac{π}{2},π)$,则$\sqrt{1-2sin(π+θ)sin(\frac{3π}{2}-θ)}$=(  )
A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知三棱锥O-ABC的三条侧棱OA,OB,OC两两垂直,△ABC为等边三角形,M为△ABC内部一点,点P在OM的延长线上,且PA=PB.
(Ⅰ)证明:OA=OB;
(Ⅱ)证明:平面PAB⊥平面POC.

查看答案和解析>>

同步练习册答案