精英家教网 > 高中数学 > 题目详情

【题目】某地某高中2018年的高考考生人数是2015年高考考生人数的1.5倍.为了更好地对比该校考生的升学情况,统计了该校2015和2018年高考情况,得到如下饼图:

2018年与2015年比较,下列结论正确的是( )

A. 一本达线人数减少

B. 二本达线人数增加了0.5倍

C. 艺体达线人数相同

D. 不上线的人数有所增加

【答案】D

【解析】

不妨设2015年的高考人数为100,则2018年的高考人数为150.分别根据扇形图算出20152018年一本、二本、艺术生上线人数以及落榜生人数,再进行比较即可.

不妨设2015年的高考人数为100,则2018年的高考人数为150.

2015年一本达线人数为28,2018年一本达线人数为36,可见一本达线人数增加了,故选项错误;

2015年二本达线人数为32,2018年二本达线人数为60,显然2018年二本达线人数不是增加了0.5倍,故选项错误;

艺体达线比例没变,但是高考人数是不相同的,所以艺体达线人数不相同,故选项错误;

2015年不上线人数为32,2018年不上线人数为42,不上线人数有所增加,选项正确. 故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCDEPA的中点,FBC的中点,底面ABCD是菱形,对角线ACBD交于点O.求证:

(1)平面EFO∥平面PCD

(2)平面PAC⊥平面PBD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,底面ABCD为矩形,平面PAB⊥平面ABCDABAP=3,ADPB=2,E为线段AB上一点,且AEEB=7︰2,点FG分别为线段PAPD的中点.

(1)求证:PE⊥平面ABCD

(2)若平面EFG将四棱锥PABCD分成左右两部分,求这两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合

1)当A中元素个数为1时,求:aA

2)当A中元素个数至少为1时,求:a的取值范围;

3)求:A中各元素之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 为参数)和定点 是此圆锥曲线的左、右焦点.

(1)以原点为极点,以轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;

(2)经过且与直线垂直的直线交此圆锥曲线 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个关于x的不等式:

1)分别求出的解集;

2)若同时满足x值也满足,求m的取值范围;

3)若同时满足x至少满足的一个,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当 时,求曲线 在点 处的切线方程;

(2)求 的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请在①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面问题(2)中,若问题(2)中的实数存在,求出的取值范围;若不存在,说明理由.

已知集合.

1)求集合

2)若成立的______条件,判断实数是否存在?

注:如果选择多个条件分别解答,按第一个解答计分.

查看答案和解析>>

同步练习册答案