精英家教网 > 高中数学 > 题目详情

【题目】请在①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面问题(2)中,若问题(2)中的实数存在,求出的取值范围;若不存在,说明理由.

已知集合.

1)求集合

2)若成立的______条件,判断实数是否存在?

注:如果选择多个条件分别解答,按第一个解答计分.

【答案】1 2)答案不唯一,见解析

【解析】

1)解一元二次不等式即可求出集合

2)选①,得集合是集合的真子集;选②,得集合是集合的真子集;选③,得集合等于集合;再求值.

解:(1)由,故集合

因为,故集合

2)若选择条件①,即成立的充分不必要条件,集合是集合的真子集,

则有,解得

所以,实数的取值范围是

若选择条件②,即成立的必要不充分条件,集合是集合的真子集,

则有,解得

所以,实数的取值范围是

若选择条件③,即成立的充要条件,则集合等于集合

则有,方程组无解

所以,不存在满足条件的实数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地某高中2018年的高考考生人数是2015年高考考生人数的1.5倍.为了更好地对比该校考生的升学情况,统计了该校2015和2018年高考情况,得到如下饼图:

2018年与2015年比较,下列结论正确的是( )

A. 一本达线人数减少

B. 二本达线人数增加了0.5倍

C. 艺体达线人数相同

D. 不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着科学技术迅猛发展,国内有实力的企业纷纷进行海外布局,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外设多个分支机构需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工对是否愿意接受外派工作的态度随机调查了100位员工,得到数据如下表:

愿意接受外派人数

不愿意接受外派人数

合计

80后

20

20

40

90后

40

20

60

合计

60

40

100

(Ⅰ)根据调查的数据,判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄层有关”,并说明理由;

(Ⅱ)该公司选派12人参观驻海外分支机构的交流体验活动,在参与调查的80后员工中用分层抽样方法抽出6名,组成80后组,在参与调查的90后员工中,也用分层抽样方法抽出6名,组成90后组

①求这12 人中,80后组90后组愿意接受外派的人数各有多少?

②为方便交流,在80后组、90后组中各选出3人进行交流,记在80后组中选到愿意接受外派的人数为,在90 后组中选到愿意接受外派的人数为,求的概率.

参考数据:

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数的最小值为.

1)求的解析式

2)画出函数的大致图形

3)求函数的最值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过对本地养鱼场年利润率的调研,其结果是:年利润亏损10%的概率为0.2,年利润获利30%的概率为0.4,年利润获利50%的概率为0.4,对远洋捕捞队的调研结果是:年利润获利为60%的概率为0.7,持平的概率为0.2,年利润亏损20%的可能性为0.1. 为确保本地的鲜鱼供应,市政府要求该公司对远洋捕捞队的投资不得高于本地养鱼场的投资的2倍.根据调研数据,该公司如何分配投资金额,明年两个项目的利润之和最大值为_________千万.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数为偶函数.

1)求的解析式;

2)若函数在区间(2,3)上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐、规定:每场知识竞赛前三名的得分都分别为,且);选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列推理正确的是( )

A. 每场比赛第一名得分为4 B. 甲可能有一场比赛获得第二名

C. 乙有四场比赛获得第三名 D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】称正整数集合 A={a1a2an}1≤a1a2ann≥2)具有性质 P:如果对任意的ij1≤ijn),两数中至少有一个属于A.

1)分别判断集合{136}{13412}是否具有性质 P

2)设正整数集合 A={a1a2an}1≤a1a2ann≥2)具有性质 P.证明:对任意1≤iniN*),ai都是an的因数;

3)求an=30n的最大值.

查看答案和解析>>

同步练习册答案