【题目】选修4-5:不等式选讲
已知函数
.
(1)求不等式
的解集;
(2)若对任意的
,都有
成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
,
,
,
,
,M,O分别为CD和AC的中点,
平面ABCD.
求证:平面
平面PAC;
Ⅱ
是否存在线段PM上一点N,使得
平面PAB,若存在,求
的值,如果不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为
,求
的分布列、数学期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系
中,曲线
的方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)若
与
有且仅有三个公共点,求
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一堆产品
正品与次品都多于2件
中任取2件,观察正品件数和次品件数,则下列说法:
“恰好有1件次品”和“恰好2件都是次品”是互斥事件
“至少有1件正品”和“全是次品”是对立事件
“至少有1件正品”和“至少有1件次品”是互斥事件但不是对立事件
“至少有1件次品”和“全是正品”是互斥事件也是对立事件
其中正确的有______
填序号
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为促进全面健身运动,某地跑步团体对本团内的跑友每周的跑步千米数进行统计,随机抽取的100名跑友,分别统计他们一周跑步的千米数,并绘制了如图频率分布直方图.
![]()
(1)由频率分布直方图计算跑步千米数不小于70千米的人数;
(2)已知跑步千米数在
的人数是跑步千米数在
的
,跑步千米数在
的人数是跑步千米数在
的
,现在从跑步千米数在
的跑友中抽取3名代表发言,用
表示所选的3人中跑步千米数在
的人数,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心为坐标原点、焦点在坐标轴上的椭圆
经过点
和点
,直线
:
与椭圆
交于不同的
,
两点.
(1)求椭圆
的标准方程;
(2)若椭圆
上存在点
,使得四边形
恰好为平行四边形,求直线
与坐标轴围成的三角形面积的最小值以及此时
,
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为![]()
![]()
(1)求频率分布直方图中
的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在
的受访职工中,随机抽取2人,求此2人评分都在
的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com