精英家教网 > 高中数学 > 题目详情
6.设U=R,A={x|x≤2,或x≥5},B=$\{x|\frac{2x-5}{x+2}<1\}$,C={x|a<x<a+1}
(1)求A∪B和(∁UA)∩B
(2)若B∩C=C,求实数a的取值范围.

分析 (1)运用分式不等式的解法,化简集合B,结合交、并和补集的定义,即可得到所求集合;
(2)B∩C=C,可得C⊆B,可得a的不等式组,解不等式即可得到所求范围.

解答 解:(1)U=R,A={x|x≤2,或x≥5},
UA={x|2<x<5},
B=$\{x|\frac{2x-5}{x+2}<1\}$={x|$\frac{x-7}{x+2}$<0}={x|(x+2)(x-7)<0}={x|-2<x<7},
可得A∪B=R;
(∁UA)∩B={x|2<x<5};
(2)B∩C=C,可得C⊆B,
C={x|a<x<a+1},B={x|-2<x<7},
则-2≤a且a+1≤7,
解得-2≤a≤6.
则a的取值范围是[-2,6].

点评 本题考查集合的混合运算,注意运用定义法解题,同时考查分式不等式的解法,以及集合的包含关系,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知圆C的圆心在直线3x+y-1=0上,且x轴,y轴被圆C截得的弦长分别为2$\sqrt{5}$,4$\sqrt{2}$,若圆心C位于第四象限
(1)求圆C的方程;
(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x-1)2-y2=$\frac{5}{2}$,求$\overrightarrow{PA}$$•\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{3}$x3-ax在R上是增函数,则实数a的取值范围是(  )
A.a≥0B.a≤0C.a>0D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”,则下列命题是真命题的是(  )
A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分又不必要条件”中,选出恰当的一种填空:“a=0”是“函数f(x)=x2+ax(x∈R)为偶函数”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设m,n是两条不同直线,α,β,γ是三个不同平面,有下列说法:
①若α⊥β,m?β,则m⊥α      
②若α∥β,m?α,则m∥β
③若n⊥α,n⊥β,m⊥α,则m⊥β 
④若α⊥γ,β⊥γ,m⊥α,则m⊥β
其中正确的是(  )
A.①④B.②③④C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设α,β为锐角,且sin α=$\frac{\sqrt{5}}{5}$,cos β=$\frac{{3\sqrt{10}}}{10}$,则α+β的值为(  )
A.$\frac{3}{4}$πB.$\frac{5}{4}$πC.$\frac{π}{4}$D.$\frac{π}{4}或\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,点$(n,\frac{{S}_{n}}{n})$在直线y=$\frac{1}{2}x+\frac{11}{2}$上,数列{bn}为等差数列,且b3=11,前9项和为153.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=$\frac{3}{(2{a}_{n}-11)(2{b}_{n}-1)}$,数列{cn}的前n项和为Tn,求使不等式Tn>$\frac{k}{57}$对一切的n∈N*都成立的最大整数k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-1|-|2x-3|.
(1)已知f(x)≥m对0≤x≤3恒成立,求实数m的取值范围;
(2)已知f(x)的最大值为M,a,b∈R+,a+2b=Mab,求a+2b的最小值.

查看答案和解析>>

同步练习册答案