精英家教网 > 高中数学 > 题目详情
16.已知圆C的圆心在直线3x+y-1=0上,且x轴,y轴被圆C截得的弦长分别为2$\sqrt{5}$,4$\sqrt{2}$,若圆心C位于第四象限
(1)求圆C的方程;
(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x-1)2-y2=$\frac{5}{2}$,求$\overrightarrow{PA}$$•\overrightarrow{PB}$的取值范围.

分析 (1)设圆C的方程为:(x-a)2+(y-b)2=r2
根据题意,有$\left\{\begin{array}{l}{{b}^{2}+5={r}^{2}…①}\\{{a}^{2}+8={r}^{2}…②}\\{3a+b-1=0…③}\\{a>0,b<0}\end{array}\right.$
由①②③得a=1,⇒b=1-3a=-2,r2=9,即可得圆的方程;
(2)在圆C的方程:(x-1)2+(y+2)2=9中令y=0,得A(1-$\sqrt{5}$,0),B(1+$\sqrt{5},0$),N(1,0).
将x-1)2+(y+2)2<9.(x-1)2-y2=$\frac{5}{2}$代入$\overrightarrow{PA}$$•\overrightarrow{PB}$=(1-$\sqrt{5}$-x,-y)(1+$\sqrt{5}$-x,-y)=(x-1)2+y2-5即可求解.

解答 解:(1)设圆C的方程为:(x-a)2+(y-b)2=r2
根据题意,有$\left\{\begin{array}{l}{{b}^{2}+5={r}^{2}…①}\\{{a}^{2}+8={r}^{2}…②}\\{3a+b-1=0…③}\\{a>0,b<0}\end{array}\right.$
①-②得b2=a2+3,…④
由③④得4a2-3a-1=0,∵a>0,解得a=1,⇒b=1-3a=-2,r2=9,
∴圆C的方程为:(x-1)2+(y+2)2=9,
(2)在圆C的方程:(x-1)2+(y+2)2=9中令y=0,
得A(1-$\sqrt{5}$,0),B(1+$\sqrt{5},0$),∴N(1,0).
∵动点P(x,y)在圆C内,∴(x-1)2+(y+2)2<9…①
将①代入(x-1)2-y2=$\frac{5}{2}$得-$\frac{5}{2}$$<y<\frac{1}{2}$,0$≤{y}^{2}<\frac{25}{4}$
$\overrightarrow{PA}$$•\overrightarrow{PB}$=(1-$\sqrt{5}$-x,-y)(1+$\sqrt{5}$-x,-y)=(x-1)2+y2-5…②
将(x-1)2-y2=$\frac{5}{2}$代入②得$\overrightarrow{PA}$$•\overrightarrow{PB}$=2y2-$\frac{5}{2}$$∈[-\frac{5}{2},10]$.

点评 本题考查圆的方程,与圆有关的最值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.“λ<1”是“数列an=n2-2λn为递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线x+y-2=0和ax-y+1=0的夹角为$\frac{π}{3}$,则a的值为2±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个盒子里有7只好晶体管,3只坏晶体管,从盒子里先取一个晶体管,然后不放回的再从盒子里取出一个晶体管,若已知第1只是好的,则第2只是坏的概率为(  )
A.$\frac{3}{10}$B.$\frac{1}{3}$C.$\frac{7}{10}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线2x+ay-1=0与直线ax+(2a-1)y+3=0垂直,则a=(  )
A.-$\frac{1}{2}$B.0C.-$\frac{1}{2}$或0D.-2或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}&{\;}\\{y≥1}&{\;}\\{x+y≤5}&{\;}\end{array}\right.$时,z=$\frac{x}{a}$+$\frac{y}{b}$(a≥b>0)的最大值为1,则a+b的最小值为(  )
A.2B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若{an}为等差数列,且a2+a5+a8=39,则a1+a2+…+a9的值为(  )
A.114B.117C.111D.108

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在复平面内,复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设U=R,A={x|x≤2,或x≥5},B=$\{x|\frac{2x-5}{x+2}<1\}$,C={x|a<x<a+1}
(1)求A∪B和(∁UA)∩B
(2)若B∩C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案