精英家教网 > 高中数学 > 题目详情
5.在复平面内,复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=$\frac{1}{4}-\frac{3}{4}$+$\frac{\sqrt{3}}{2}$i=$-\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i对应的点($-\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)位于第二象限.
故选:B.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.过点P(2,1),以-3为斜率的直线方程为3x+y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C的圆心在直线3x+y-1=0上,且x轴,y轴被圆C截得的弦长分别为2$\sqrt{5}$,4$\sqrt{2}$,若圆心C位于第四象限
(1)求圆C的方程;
(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x-1)2-y2=$\frac{5}{2}$,求$\overrightarrow{PA}$$•\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}满足an+1=$\frac{1}{{a}_{n}+1}$,a1=1,则$\frac{{a}_{4}}{{a}_{5}}$=(  )
A.$\frac{9}{10}$B.$\frac{3}{8}$C.$\frac{25}{24}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知命题p:“?x∈R,?m∈R,使4x+2x•m+1=0”.若命题p为真命题,则实数m的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线y2=2px的焦点为F,M为抛物线上一点,若△OFM的外接圆与抛物线的准线相切(O为坐标原点),且外接圆的面积为9π,则p=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{3}$x3-ax在R上是增函数,则实数a的取值范围是(  )
A.a≥0B.a≤0C.a>0D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”,则下列命题是真命题的是(  )
A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,点$(n,\frac{{S}_{n}}{n})$在直线y=$\frac{1}{2}x+\frac{11}{2}$上,数列{bn}为等差数列,且b3=11,前9项和为153.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=$\frac{3}{(2{a}_{n}-11)(2{b}_{n}-1)}$,数列{cn}的前n项和为Tn,求使不等式Tn>$\frac{k}{57}$对一切的n∈N*都成立的最大整数k.

查看答案和解析>>

同步练习册答案