精英家教网 > 高中数学 > 题目详情
20.已知命题p:“?x∈R,?m∈R,使4x+2x•m+1=0”.若命题p为真命题,则实数m的取值范围是(-∞,-2].

分析 由题意可知:∴-m=2x+$\frac{1}{{2}^{x}}$,根据基本不等式的性质,即可求得m的取值范围.

解答 解:因为p为真命题,即方程4x+2x•m+1=0有实数解,
∴-m=2x+$\frac{1}{{2}^{x}}$≥2,
∴m≤-2,
故m的取值范围是(-∞,-2].
故答案为:(-∞,-2].

点评 本题考查了基本不等式的性质、指数的运算性质、基本不等式的性质,简易逻辑的有关知识,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)的定义域为(0,+∞),f(8)=3,对任意正数x1,x2,都有f(x1x2)=f(x1)+f(x2),猜想y=f(x)的表达式为(  )
A.f(x)=2xB.$f(x)=\frac{3}{8}x$C.f(x)=log2xD.f(x)=3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线2x+ay-1=0与直线ax+(2a-1)y+3=0垂直,则a=(  )
A.-$\frac{1}{2}$B.0C.-$\frac{1}{2}$或0D.-2或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若{an}为等差数列,且a2+a5+a8=39,则a1+a2+…+a9的值为(  )
A.114B.117C.111D.108

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出下列条件:①l∥α;②l与α至少有一个公共点;③l与α至多有一个公共点.能确定直线l在平面α外的条件的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在复平面内,复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点恰好与抛物线y2=8x的焦点重合,则双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知A,B,C为锐角△ABC的内角,$\overrightarrow{a}$=(sinA,sinBsinC),$\overrightarrow{b}$=(1,-2),$\overrightarrow{a}$⊥$\overrightarrow{b}$.
(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线f(x)=$\frac{lo{g}_{2}(x+1)}{x+1}$(x>0)上有一点列Pn(xn,yn)(n∈N*),过点Pn在x轴上的射影是Qn(xn,0),且x1+x2+x3+…+xn=2n+1-n-2.(n∈N*)
(1)求数列{xn}的通项公式;
(2)设四边形PnQnQn+1Pn+1的面积是Sn,求Sn
(3)在(2)条件下,求证:$\frac{1}{{S}_{1}}$+$\frac{1}{2{S}_{2}}$+…+$\frac{1}{n{S}_{n}}$<4.

查看答案和解析>>

同步练习册答案