精英家教网 > 高中数学 > 题目详情
12.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点恰好与抛物线y2=8x的焦点重合,则双曲线的渐近线方程为y=±$\sqrt{3}$x.

分析 根据题意,由抛物线的标准方程求出其焦点坐标,即可得双曲线的焦点坐标,由双曲线的几何性质可得a2+3=4,解可得a=1,即可得双曲线的标准方程,由双曲线的渐近线方程即可得答案.

解答 解:根据题意,抛物线y2=8x的焦点坐标为(2,0),
其双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点也为(2,0),
则有a2+3=4,
解可得a=1,
故双曲线的方程为:x2-$\frac{{y}^{2}}{3}$=1,
则双曲线的渐近线方程为:y=±$\sqrt{3}$x;
故答案为:y=±$\sqrt{3}$x.

点评 本题考查双曲线、抛物线的标准方程,注意分析双曲线的焦点坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求圆x2-2x+y2+10y-5=0的圆心和半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两个单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,若向量$\overrightarrow{{b}_{1}}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{{b}_{2}}$=$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{{b}_{1}}$+$\overrightarrow{{b}_{2}}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知命题p:“?x∈R,?m∈R,使4x+2x•m+1=0”.若命题p为真命题,则实数m的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A是B的充分不必要条件,C是B是必要不充分条件,¬A是D的充分不必要条件,则C是¬D的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{3}$x3-ax在R上是增函数,则实数a的取值范围是(  )
A.a≥0B.a≤0C.a>0D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若向量$\overrightarrow{a}$=(4,2),$\overrightarrow{b}$=(8,x),$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分又不必要条件”中,选出恰当的一种填空:“a=0”是“函数f(x)=x2+ax(x∈R)为偶函数”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上存在点P,满足P到y轴和到x轴的距离比为$\sqrt{3}$,则双曲线离心率的取值范围是($\frac{2\sqrt{3}}{3}$,+∞).

查看答案和解析>>

同步练习册答案