精英家教网 > 高中数学 > 题目详情
13.数列{an}满足an+1=$\frac{1}{{a}_{n}+1}$,a1=1,则$\frac{{a}_{4}}{{a}_{5}}$=(  )
A.$\frac{9}{10}$B.$\frac{3}{8}$C.$\frac{25}{24}$D.$\frac{24}{25}$

分析 利用递推公式依次求出该数列的前5项,由此能求出$\frac{{a}_{4}}{{a}_{5}}$的值.

解答 解:∵数列{an}满足an+1=$\frac{1}{{a}_{n}+1}$,a1=1,
∴${a}_{2}=\frac{1}{1+1}=\frac{1}{2}$,
${a}_{3}=\frac{1}{\frac{1}{2}+1}$=$\frac{2}{3}$,
${a}_{4}=\frac{1}{\frac{2}{3}+1}$=$\frac{3}{5}$,
${a}_{5}=\frac{1}{\frac{3}{5}+1}$=$\frac{5}{8}$,
∴$\frac{{a}_{4}}{{a}_{5}}$=$\frac{\frac{3}{5}}{\frac{5}{8}}$=$\frac{3}{5}×\frac{5}{8}$=$\frac{3}{8}$.
故选:B.

点评 本查题考查数列的第4项和第2项的比值的求法,考查数列递推式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,已知点P(2,1)在椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)不经过坐标原点O的直线l与椭圆C交于A,B两点(不与点P重合),且线段AB的中为D,直线OD的斜率为1,记直线PA,PB的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个盒子里有7只好晶体管,3只坏晶体管,从盒子里先取一个晶体管,然后不放回的再从盒子里取出一个晶体管,若已知第1只是好的,则第2只是坏的概率为(  )
A.$\frac{3}{10}$B.$\frac{1}{3}$C.$\frac{7}{10}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}&{\;}\\{y≥1}&{\;}\\{x+y≤5}&{\;}\end{array}\right.$时,z=$\frac{x}{a}$+$\frac{y}{b}$(a≥b>0)的最大值为1,则a+b的最小值为(  )
A.2B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若{an}为等差数列,且a2+a5+a8=39,则a1+a2+…+a9的值为(  )
A.114B.117C.111D.108

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在正项数列{an}中,已知a1=1,且满足an+1=2an$-\frac{1}{{a}_{n}+1}$(n∈N*)
(Ⅰ)求a2,a3
(Ⅱ)证明.an≥$(\frac{3}{2})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在复平面内,复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若cos2α=$\frac{3}{5}$,则sin4α+cos4α的值是(  )
A.$\frac{17}{25}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{33}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}为等比数列,且${a_1}{a_{13}}=\frac{π}{6}$,则tan(a2a12)的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.-$\sqrt{3}$C.$±\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案