精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系xoy中,已知点P(2,1)在椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)不经过坐标原点O的直线l与椭圆C交于A,B两点(不与点P重合),且线段AB的中为D,直线OD的斜率为1,记直线PA,PB的斜率分别为k1,k2,求证:k1•k2为定值.

分析 (1)根据椭圆的离心率公式,将P代入椭圆方程,即可求得a和b的值,求得椭圆方程;
(2)根据中点坐标公式及直线斜率公式,求得x1+x2=y1+y2,利用点差法求得直线l的斜率,将直线方程代入椭圆方程,利用韦达定理及直线的斜率公式,即可求得k1•k2为定值$\frac{1}{2}$.

解答 解:(1)由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{{\sqrt{2}}}{2}$,则a2=2b2
由P(2,1)在椭圆上,则$\frac{4}{2{b}^{2}}+\frac{1}{{b}^{2}}=1$,
解得:b2=3,则a2=6,
∴椭圆的标准方程:$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1$;
(2)证明:设A(x1,y1),B(x2,y2),则D($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$),
由直线的斜率为1,则x1+x2=y1+y2
由点A,B在椭圆上,则$\frac{{x}_{1}^{2}}{6}+\frac{{y}_{1}^{2}}{3}=1$,$\frac{{x}_{2}^{2}}{6}+\frac{{y}_{2}^{2}}{3}=1$,
两式相减整理得:$\frac{{x}_{1}^{2}-{x}_{2}^{2}}{6}+\frac{{y}_{1}^{2}-{y}_{2}^{2}}{3}=0$,x1-x2+2(y1-y2)=0,则$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$,
设直线l的方程y=-$\frac{1}{2}$x+t,
$\left\{\begin{array}{l}{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1}\\{y=-\frac{1}{2}x+t}\end{array}\right.$,整理得:3x2-4tx+4t2-12=0,
则x1+x2=$\frac{4t}{3}$,x1x2=$\frac{4({t}^{2}-3)}{3}$,
则k1•k2=$\frac{({y}_{1}-1)({y}_{2}-1)}{({x}_{1}-2)({x}_{2}-2)}$=$\frac{{y}_{1}{y}_{2}-({y}_{1}+{y}_{2})+1}{({x}_{1}{x}_{2})-2({x}_{1}+{x}_{2})+4}$,
=$\frac{\frac{1}{4}{x}_{1}{x}_{2}-(\frac{t-1}{2})({x}_{1}+{x}_{2})-2t+{t}^{2}+1}{{x}_{1}{x}_{2}-2({x}_{1}+{x}_{2})+4}$
=$\frac{\frac{{t}^{2}-3}{3}-(\frac{t-1}{2})(\frac{4t}{3})-2t+{t}^{2}+1}{\frac{4({t}^{2}-3)}{3}-2×(\frac{4t}{3})+4}$=$\frac{1}{2}$,
∴k1•k2为定值$\frac{1}{2}$.

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,点差法的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组抽出的号码为28,则第8组抽出的号码应是a;若用分层抽样方法,则50岁以下年龄段应抽取b人,那么a+b等于(  )
A.46B.45C.70D.69

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E∥面AB′D′;
(2)求面AB'D'与面ABD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆E的中心为坐标原点,离心率为$\frac{{\sqrt{3}}}{2}$,E的右焦点与抛物线C:y2=12x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,右焦点为F,上顶点为A,且△AOF的面积为$\frac{1}{2}$(O是坐标原点)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆C上的一点,过P的直线l与以椭圆的短轴为直径的圆切于第一象限,切点为M,证明:|PF|+|PM|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求数列{an}的通项公式;
(2)当d>0时,设${b_n}=\frac{{{a_n}+4}}{2^n}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点P(2,1),以-3为斜率的直线方程为3x+y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在二项式($\sqrt{x}$+$\frac{1}{2\root{3}{x}}$)n展开式中,前三项的系数成等差数列.
求:(1)展开式中各项系数和;
(2)展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}满足an+1=$\frac{1}{{a}_{n}+1}$,a1=1,则$\frac{{a}_{4}}{{a}_{5}}$=(  )
A.$\frac{9}{10}$B.$\frac{3}{8}$C.$\frac{25}{24}$D.$\frac{24}{25}$

查看答案和解析>>

同步练习册答案