精英家教网 > 高中数学 > 题目详情
8.已知等差数列{an}满足a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求数列{an}的通项公式;
(2)当d>0时,设${b_n}=\frac{{{a_n}+4}}{2^n}$,求数列{bn}的前n项和为Tn

分析 (1)由a1+a3=2a2=0⇒f(x+1)+f(x-1)=0,即x2-4x+3=0,得:x=1或3;当x=1时,d=-2,an=-2n+4;当x=3时,d=2,an=2n-4
(2)当d>0时,an=2n-4,${b_n}=n•\frac{1}{{{2^{n-1}}}}$,利用错位相减法求和.

解答 解:(1)由a1+a3=2a2=0⇒f(x+1)+f(x-1)=0,即x2-4x+3=0,
得:x=1或3…(3分)
当x=1时,d=-2,an=-2n+4;
当x=3时,d=2,an=2n-4…(6分)
(2)当d>0时,an=2n-4,${b_n}=n•\frac{1}{{{2^{n-1}}}}$…(8分)
Tn=$1•\frac{1}{{2}^{0}}+2•\frac{1}{{2}^{1}}+3•\frac{1}{{2}^{2}}+…+n•\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}{T}_{n}$=1$•\frac{1}{2}$+2$•\frac{1}{{2}^{2}}$+…+(n-1)$\frac{1}{{2}^{n-1}}$+n$•\frac{1}{{2}^{n}}$,
两式相减得$\frac{1}{2}{T}_{n}=1+\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}}-n•\frac{1}{{2}^{n}}$
=2-$\frac{n+2}{{2}^{n}}$,
 得${T_n}=4-\frac{n+2}{{{2^{n-1}}}}$…(12分).

点评 本题考查了数列的递推式,考查了错位相减法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数$f(x)={cos^2}x-2{cos^2}\frac{x}{2}$的最小值为(  )
A.1B.-1C.$\frac{5}{4}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知公差不为零的等差数列{an}满足:a1=3,且a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=$\frac{1}{{{a}_{n-1}}_{{a}_{n}}}$,求数列{bn}的前n项和{Tn}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,将圆O:x2+y2=4上每一个点的横坐标不变,纵坐标变为原来的$\frac{1}{2}$,得到曲线C.
(1)求曲线C的参数方程;
(2)以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,在两坐标系中取相同的单位长度,射线θ=α(ρ≥0)与圆O和曲线C分别交于点A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,已知点P(2,1)在椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)不经过坐标原点O的直线l与椭圆C交于A,B两点(不与点P重合),且线段AB的中为D,直线OD的斜率为1,记直线PA,PB的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的前n项和为Sn(Sn≠0),a1=$\frac{1}{2}$,且对任意正整数n,都有an+1+SnSn+1=0,则a1+a20=$\frac{1}{210}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列有关命题的说法中,正确的是(  )
A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”
B.命题“若α>β,则sinα>sinβ”的逆否命题为真命题
C.命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1>0”
D.“x2+x-2>0”的一个充分不必要条件是“x>1”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,若椭圆C上存在两点P、Q满足$\overrightarrow{PF}$=2$\overrightarrow{FQ}$,则椭圆C的离心率的取值范围是[$\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在正项数列{an}中,已知a1=1,且满足an+1=2an$-\frac{1}{{a}_{n}+1}$(n∈N*)
(Ⅰ)求a2,a3
(Ⅱ)证明.an≥$(\frac{3}{2})^{n-1}$.

查看答案和解析>>

同步练习册答案