精英家教网 > 高中数学 > 题目详情
19.已知公差不为零的等差数列{an}满足:a1=3,且a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=$\frac{1}{{{a}_{n-1}}_{{a}_{n}}}$,求数列{bn}的前n项和{Tn}.

分析 (Ⅰ)设数列{an}的公差为d(d≠0),由题可知${a_1}•{a_{13}}=a_4^2$,的3(3+12d)=(3+3d)2,d=2,即可求得通项公式.
(Ⅱ)${b_n}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$累加即可求得Tn

解答 解:(Ⅰ)设数列{an}的公差为d(d≠0),由题可知${a_1}•{a_{13}}=a_4^2$,
即3(3+12d)=(3+3d)2,解得d=2,
则an=3+(n-1)×2=2n+1.
(Ⅱ)解:因为${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}$,所以${b_n}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$…(8分)
=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$…(9分)
则Tn=b1+b2+b3+…bn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$…(10分)
=$\frac{n}{2n+1}$…(12分)

点评 本题考查了等差数列的通项,裂项求和,属于中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2-3x+lnx,则f(x)在区间[$\frac{1}{2}$,2]上的最小值为-2;当f(x)取到最小值时,x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn是等差数列{an}的前n项和,且${S_n}=-2{n^2}+15n$,
(1)求数列{an}的通项公式;
(2)n为何值时,Sn取得最大值并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7..已知函数$f(x)=\frac{1}{x}+lnx$.
(1)求函数f(x)的单调区间;
(2)试证明:${({1+\frac{1}{n}})^{n+1}}>e$(e=2.718…,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E∥面AB′D′;
(2)求面AB'D'与面ABD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\vec m=({1,cosθ}),\vec n=({sinθ,-2})$,且$\vec m⊥\vec n$,则sin2θ+6cos2θ的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆E的中心为坐标原点,离心率为$\frac{{\sqrt{3}}}{2}$,E的右焦点与抛物线C:y2=12x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求数列{an}的通项公式;
(2)当d>0时,设${b_n}=\frac{{{a_n}+4}}{2^n}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知二项式${({x-\frac{1}{x}})^6}$,则它的展开式中的常数项为-20.

查看答案和解析>>

同步练习册答案