分析 利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.
解答 解:椭圆E的中心在坐标原点,离心率为$\frac{\sqrt{3}}{2}$,
E的右焦点(c,0)与抛物线C:y2=12x的焦点(3,0)重合,
可得c=3,a=2$\sqrt{3}$,b2=3,椭圆的标准方程为:$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1,
抛物线的准线方程为:x=-3,
代入椭圆方程,解得y=±$\frac{\sqrt{3}}{2}$,
所以A(-3,$\frac{\sqrt{3}}{2}$),B(-3,-$\frac{\sqrt{3}}{2}$).
∴|AB|=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1” | |
| B. | 命题“若α>β,则sinα>sinβ”的逆否命题为真命题 | |
| C. | 命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1>0” | |
| D. | “x2+x-2>0”的一个充分不必要条件是“x>1” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com